Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii)
Ex 6.3, 1 (iv)
Ex 6.3, 1 (v) Important
Ex 6.3, 1 (vi)
Ex 6.3, 2
Ex 6.3, 3
Ex 6.3, 4 Important
Ex 6.3, 5
Ex 6.3, 6
Ex 6.3, 7
Ex 6.3, 8 Important You are here
Ex 6.3, 9
Ex 6.3, 10
Ex 6.3, 11 Important
Ex 6.3, 12 Important
Ex 6.3, 13 Important
Ex 6.3, 14 Important
Ex 6.3, 15 Important
Ex 6.3, 16
Last updated at April 16, 2024 by Teachoo
Ex 6.3, 8 E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that ΔABE ∼ ΔCFB Given: A parallelogram ABCD where E is point on side AD produced & BE intersects CD at F To Prove: ΔABE ∼ ΔCFB. Proof: In parallelogram ABCD , opposite angles are equal, Hence, ∠A = ∠C Also, In parallelogram ABCD opposite sides are parallel, AD ∥ BC Now since AE is AD extended, AE ∥ BC and BE is the traversal ∴ ∠ AEB = ∠ CBF Now in Δ ABE & Δ CFB ∠A = ∠C ∠ AEB = ∠ CBF ∴ Δ ABE ∼ Δ CFB Hence proved