Advertisement
Advertisement
Last updated at Sept. 6, 2021 by Teachoo
Transcript
Ex10.3, 3 Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis. (iii) x y = 4 x y = 4 Dividing both side by (12 + ( 1)2)= (1 + 1)= 2 ( )/ 2 = 4/ 2 ( )/ 2 = 4/ 2 2/ 2 ( )/ 2 = (4 2)/2 / 2 ( )/ 2 = 2 2 x(1/ 2) + y(( 1)/ 2) = 2 2 Normal form of any line is x cos + y sin = p Comparing (1) & (2) p = 2 2 & cos = 1/ 2 & sin = ( 1)/ 2 Finding = 360 45 = 315 Thus, the normal form of line is x cos 315 + y sin 315 = 2 2 Hence, perpendicular distance from origin = p = 2 2 & angle between perpendicular & the + ve x-axis = = 315
Ex 10.3
Ex 10.3, 1 (ii) Important
Ex 10.3, 1 (iii)
Ex 10.3, 2 (i)
Ex 10.3, 2 (ii)
Ex 10.3, 2 (iii) Important
Ex 10.3, 3 (i)
Ex 10.3, 3 (ii)
Ex 10.3, 3 (iii) Important You are here
Ex 10.3, 4
Ex 10.3, 5 Important
Ex 10.3, 6 (i) Important
Ex 10.3, 6 (ii)
Ex 10.3, 7
Ex 10.3, 8 Important
Ex 10.3, 9 Important
Ex 10.3, 10
Ex 10.3, 11
Ex 10.3, 12 Important
Ex 10.3, 13
Ex 10.3, 14 Important
Ex 10.3, 15
Ex 10.3, 16 Important
Ex 10.3, 17 Important
Ex 10.3, 18 Important
Ex 10.3
About the Author