## It is given that ∆ ABC ~ ∆ DFE, ∠ A = 30°, ∠ C = 50°, AB = 5 cm, AC = 8 cm and DF = 7.5 cm. Then, the following is true:

## (A) DE = 12 cm, ∠ F = 50°

## (B) DE = 12 cm, ∠ F = 100°

## (C) EF = 12 cm, ∠ D = 100°

## (D) EF = 12 cm, ∠ D = 30°

NCERT Exemplar - MCQ

Question 1

Question 2 Important

Question 3

Question 4 Important

Question 5 Important

Question 6 Important

Question 7

Question 8 Important

Question 9

Question 10 Important Deleted for CBSE Board 2025 Exams

Question 11 You are here

Question 12 Important

Question 13 Deleted for CBSE Board 2025 Exams

Question 14 Important

Last updated at April 16, 2024 by Teachoo

Question 11 It is given that ∆ ABC ~ ∆ DFE, ∠ A = 30°, ∠ C = 50°, AB = 5 cm, AC = 8 cm and DF = 7.5 cm. Then, the following is true: (A) DE = 12 cm, ∠ F = 50° (B) DE = 12 cm, ∠ F = 100° (C) EF = 12 cm, ∠ D = 100° (D) EF = 12 cm, ∠ D = 30° So, our triangles look like Now, ∠ D = ∠ A = 30° ∠ E = ∠ C = 50° And, in Δ DEF By Angle sum property ∠ D + ∠ F + ∠ E = 180° 30° + ∠ F + 50° = 180° 80° + ∠ F = 180° ∠ F = 180 − 80° ∠ F = 100° Since ∠ F = 100° & ∠ D = 30° So, only option (B) and option (D) can be the answer Since ∆ ABC ~ ∆ DFE Corresponding sides are proportional ∴ 𝐴𝐵/𝐷𝐹=𝐴𝐶/𝐷𝐸=𝐵𝐶/𝐸𝐹 Putting values 𝟓/(𝟕.𝟓)=𝟖/𝑫𝑬=𝑩𝑪/𝑬𝑭 Comparing 𝟓/(𝟕.𝟓)=𝟖/𝑫𝑬 2/3=8/𝐷𝐸 DE = 8 × 3/2 DE = 12 cm Thus, DE = 12 cm & ∠ F = 100° So, the correct answer is (B)