CBSE Class 12 Sample Paper for 2021 Boards

Class 12
Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

## Solve the following differential equation: ππ¦ ππ₯ = π₯ 3 πππ ππ π¦, πππ£ππ π‘βππ‘ π¦(0) = 0.

Β

Β

This video is only available for Teachoo black users

Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month

### Transcript

Question 25 Solve the following differential equation: ππ¦/ππ₯ = π₯3 πππ ππ π¦, πππ£ππ π‘βππ‘ π¦(0) = 0. Given ππ¦/ππ₯ = π₯3 πππ ππ π¦ ππ¦ Γ 1/(πππ ππ π¦) = π₯3 ππ₯ ππ¦ Γ sin y = π₯3 ππ₯ Integrating both sides β«1βγsinβ‘π¦ ππ¦γ = β«1βγπ₯^3 ππ₯γ βπππ  π¦ = π₯^4/4+πΆ Since y(0) = 0 Putting x = 0, y = 0 βπππ  0 = 0/4+πΆ β1 = πΆ πͺ=βπ So, our equation becomes βπππ  π¦ = π₯^4/4+πΆ βπππ  π¦ = π₯^4/4β1 π^π/π+ππ¨π¬β‘πβπ=π