Question 21 - CBSE Class 12 Sample Paper for 2021 Boards - Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

Last updated at Oct. 26, 2020 by Teachoo

Hello! We hope that the questions explained by Teachoo are helping you for your Board exams. If Teachoo has been of any help to you, would you consider making a donation to support us? Please click on this link to support us.

Find the value(s) of k so that the following function is continuous at π₯ = 0
f (x) = {
^{
1- cos β‘kx / x sinβ‘xΒ if xβ 0
}_{
1/2 if x=0
}

Question 21 Find the value(s) of k so that following function is continuous at π₯ = 0, f (x) = {β((1 β cosβ‘ππ₯)/(π₯ sinβ‘π₯ ) ππ π₯β 0@ 1/2 ππ π₯=0)β€
Given that function is continuous at x = 0
π(π₯) is continuous at x = 0
i.e. limβ¬(xβ0) π(π₯)=π(0)
Limit at x β 0
(πππ)β¬(π₯β0) f(x) = (πππ)β¬(ββ0) f(h)
= limβ¬(hβ0) (1 β cosβ‘πβ)/(β (sinβ‘β) )
= limβ¬(hβ0) (2 sin^2β‘γπβ/2γ)/(β (sinβ‘β))
= limβ¬(hβ0) (2 sin^2β‘γπβ/2γ)/1 Γ1/(β (sinβ‘β))
= limβ¬(hβ0) (2 sin^2β‘γπβ/2γ)/(πβ/2)^2 Γ (πβ/2)^2/(β (sinβ‘β))
= limβ¬(hβ0) (2 sin^2β‘γπβ/2γ)/(πβ/2)^2 Γ (π^2 β^2)/(4β (sinβ‘β))
= limβ¬(hβ0) (2 sin^2β‘γπβ/2γ)/(πβ/2)^2 Γ (π^2 β)/(4 (sinβ‘β))
= π^2/2 limβ¬(hβ0) sin^2β‘γπβ/2γ/(πβ/2)^2 Γ β/sinβ‘β
= π^2/2 limβ¬(hβ0) sin^2β‘γπβ/2γ/(πβ/2)^2 Γlimβ¬(hβ0) β/sinβ‘β
= π^2/2 Γ 1 Γ 1
= π^π/π
Now,
limβ¬(xβ0) π(π₯)=π(0)
π^2/2 = 1/2
π^2 =1
π =Β±π
Hence, k = 1, β1

Made by

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths and Science at Teachoo.