Check sibling questions


Transcript

Ex 7.1, 22 If ๐‘‘/๐‘‘๐‘ฅ f(x) = 4x3 โˆ’ 3/๐‘ฅ4 such that f(2) = 0, then f(x) is x4 + 1/๐‘ฅ3 โˆ’ 129/8 (B) x3 + 1/๐‘ฅ4 + 129/8 (C) x4 + 1/๐‘ฅ3 + 129/8 (D) x3 + 1/๐‘ฅ4 โˆ’ 129/8 Given ๐‘‘/๐‘‘๐‘ฅ f(x) = 4x3 โˆ’ 3/๐‘ฅ4 Integrating both sides โˆซ1โ–’ใ€–๐‘‘/๐‘‘๐‘ฅ ๐‘“(๐‘ฅ) ใ€—=โˆซ1โ–’(4๐‘ฅ^3โˆ’ 3/๐‘ฅ^4 )๐‘‘๐‘ฅ โˆซ1โ–’๐‘‘/๐‘‘๐‘ฅ ๐‘“(๐‘ฅ)=4โˆซ1โ–’ใ€–๐‘ฅ^3 ๐‘‘๐‘ฅใ€—โˆ’3โˆซ1โ–’ใ€–1/๐‘ฅ^4 ๐‘‘๐‘ฅใ€— ๐‘“(๐‘ฅ)=4โˆซ1โ–’ใ€–๐‘ฅ^3 ๐‘‘๐‘ฅใ€—โˆ’3โˆซ1โ–’ใ€–๐‘ฅ^(โˆ’4) ๐‘‘๐‘ฅใ€— ๐‘“(๐‘ฅ)=4 ๐‘ฅ^(3 + 1)/(3 + 1)โˆ’3 ๐‘ฅ^(โˆ’4 + 1)/(โˆ’4 + 1)+๐ถ ๐‘“(๐‘ฅ)=4 ๐‘ฅ^4/4 โˆ’ 3 ๐‘ฅ^(โˆ’3)/(โˆ’3)+๐ถ ๐‘“(๐‘ฅ)=๐‘ฅ^4+๐‘ฅ^(โˆ’3)+๐ถ ๐‘“(๐‘ฅ)=๐‘ฅ^4+ 1/๐‘ฅ^3 +๐ถ Given ๐‘“(2)=0 Putting ๐‘ฅ=2 in (1) ๐‘“(2)=(2)^4+ 1/(2)^3 +๐ถ 0=16+ 1/8 +๐ถ 0= (128 + 1)/8 +๐ถ 0= 129/8 +๐ถ ๐ถ=(โˆ’129)/8 Putting ๐ถ=(โˆ’129)/8 in (1) ๐‘“(๐‘ฅ)=๐‘ฅ^4+ 1/๐‘ฅ^3 +๐ถ โ‡’ ๐’‡(๐’™)=๐’™^๐Ÿ’+ ๐Ÿ/๐’™^๐Ÿ‘ โˆ’๐Ÿ๐Ÿ๐Ÿ—/๐Ÿ– โˆด Option (A) is correct.

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo