Last updated at Dec. 16, 2024 by Teachoo
Misc 24 The points on the curve 9y2 = π₯3, where the normal to the curve makes equal intercepts with the axes are (A) (4,Β±8/3) (B) (4,(β 8)/3) (C) (4,Β±3/8) (D) (Β± 4, 3/8) Since Normal makes equal intercepts with the axes Itβs equation will be π₯/π+π¦/π=1 Putting b = a π/π+π/π=π π₯+π¦=π π=βπ+π β΄ Slope of Normal = β1 Equation of line is π₯/π+π¦/π=1 where a is x βintercept & b is y β intercept Now, finding slope of normal by Differentiation 9y2 = π₯3 Differentiating w.r.t π₯ π(9π¦2)/ππ₯ = π(π₯3)/ππ₯ 9 π(π¦2)/ππ₯ Γ ππ¦/ππ¦=3π₯2 9 π(π¦2)/ππ¦ Γ ππ¦/ππ₯ = 3x2 9(2π¦) Γ ππ¦/ππ₯ = 3x2 ππ¦/ππ₯ = 3π₯2/9(2π¦) π π/π π= ππ/ππ We know that Slope of tangent Γ slope of normal = β1 π₯2/6π¦ Γ Slope of normal = β1 Slope of normal = (βππ)/ππ Since Normal is at point (π,π) Hence, Slope of normal at (β,π) = (βππ)/ππ Now, Slope of Normal = β1 (β6π)/β2=β1 6k = h2 Also, Point (β,π) is on the curve 9y2 =π₯^3 So, (π,π) will satisfy the equation of curve Putting π₯ = h & y = k in equation 9k2 = h3 Now our equations are 6k = h2 β¦(1) 9k2 = h3 β¦(2) From (3) 6k = h2 k = ππ/π Putting value of k in (4) 9k2 = h3 9(β2/6)^2= h3 9(β4/36)=β3 β4/4 = h3 β4/β3 = 4 h = 4 Putting value of h = 4 in (4) 9k2 = h3 9k2 = (4)3 k2 = 64/9 k = Β± β(64/9) k = Β± π/π Hence required point is (h, k) = (4 , (Β±8)/3) Hence correct answer is A
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10 Important
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ)
Question 1 (a)
Question 1 (b) Important
Question 2
Question 3 Important
Question 4 (MCQ) Important
Question 5 (MCQ) Important
Question 6 (MCQ)
Question 7 (MCQ) Important
Question 8 (MCQ) Important You are here
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo