Last updated at Dec. 16, 2024 by Teachoo
Misc 10 Find the points at which the function f given by f (๐ฅ) = (๐ฅโ2)^4 (๐ฅ+1)^3 has (i) local maxima (ii) local minima (iii) point of inflexionf(๐ฅ)= (๐ฅโ2)^4 (๐ฅ+1)3 Finding fโ(๐) fโ(๐ฅ) = (๐ ((๐ฅ โ 2)^4 (๐ฅ + 1)^3 ))/๐๐ฅ = ใ((๐ฅโ2)^4 )^โฒ (๐ฅ+1)ใ^3+((๐ฅ+1)^3 )^โฒ (๐ฅโ2)^4 = 4(๐ฅโ2)^3 (๐ฅ+1)^3+3(๐ฅ+1)^2 (๐ฅโ2)^4 = (๐ฅโ2)^3 (๐ฅ+1)^2 [4(๐ฅ+1)+3(๐ฅโ2)] = (๐ฅโ2)^3 (๐ฅ+1)^2 [4๐ฅ+4+3๐ฅโ6] = (๐โ๐)^๐ (๐+๐)^๐ [๐๐โ๐] Putting fโ(๐)=๐ (๐ฅโ2)^3 (๐ฅ+1)^2 (7๐ฅโ2)=0 Hence, ๐ฅ=2 & ๐ฅ=โ1 & ๐ฅ=2/7 = 0.28 (๐ฅโ2)^3 = 0 ๐ฅ โ 2 = 0 ๐=๐ (๐ฅ+1)^2=0 (๐ฅ+1)=0 ๐ = โ1 7๐ฅ โ 2 = 0 7๐ฅ = 2 ๐ = ๐/๐ Thus, ๐ฅ=โ๐ is a point of Inflexion ๐ฅ=๐/๐ is point of maxima ๐ฅ=๐ is point of minima
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10 Important You are here
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ)
Question 1 (a)
Question 1 (b) Important
Question 2
Question 3 Important
Question 4 (MCQ) Important
Question 5 (MCQ) Important
Question 6 (MCQ)
Question 7 (MCQ) Important
Question 8 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo