Last updated at Dec. 16, 2024 by Teachoo
Misc 2 The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base ?Let x be the equal sides of isosceles triangle i.e. AB = AC = π And, Base = BC = b Given that equal side of Triangle decreasing at 3 cm per second i.e. ππ₯/ππ‘= β 3 cm/sec. We need to find how fast is the area decreasing when the two equal sides are equal to the base i.e. π π¨/π π when π = b Finding Area Letβs draw perpendicular AD to BC i.e. AD β₯ BC In Isosceles triangle, perpendicular from vertex to the side bisects the side i.e. D is the mid point of BC Thus, we can write BD = DC = π/π In β ADB Using Pythagoras theorem (π΄π΅)^2=(π΄π·)^2+(π΅π·)^2 (π₯)^2=(π΄π·)^2+ (π/2)^2 π₯2 β (π/2)^2=(π΄π·)^2 (π΄π·)^2 = π₯2 β (π/2)^2 π¨π«=β(ππβ(π/π)^π ) We know that Area of isosceles triangle = 1/2 Γ Base Γ Height A = 1/2 Γ b Γ β(π₯2β(π/2)^2 ) A = π/π Γ b Γ β(ππβπ^π/π) Finding π π¨/π π Differentiating w.r.t. t ππ΄/ππ‘= 1/2 π . π(β(π₯^2 β π^2/4))/ππ‘ ππ΄/ππ‘= 1/2 π . π(β(π₯^2 β π^2/4))/ππ‘ Γππ₯/ππ₯ ππ΄/ππ‘= 1/2 π . π(β(π₯^2 β π^2/4))/ππ₯ Γπ π/π π ππ΄/ππ‘= 1/2 π . π(β(π₯^2 β π^2/4))/ππ₯ Γ π ππ΄/ππ‘= 1/2 π [1/(2β(π₯2 β π^2/4)) Γ π(π₯^2 β π^2/4)/ππ₯]Γ 3" " ππ΄/ππ‘= 1/2 π [1/(2β(π₯2 β π^2/4)) Γ(2π₯β0)]Γ 3" " π π¨/π π= πππ/(πβ(ππ β π^π/π)) Finding π π¨/π π at π = b β ππ΄/ππ‘β€|_(π₯ = π)=(3π^2)/(2β(π^2 β π^2/4)) = (6π^2)/(4β((4π^2 β π^2)/4))= (6π^2)/(4β((3π^2)/4))= (6π^2)/((4β3 π)/2)= (6π^2)/(2β3 π)= 3π/β3 =πβ3 Since dimension of area is cm2 and time is seconds β΄ ππ΄/ππ‘ = πβπ cm2/s
Miscellaneous
Misc 2 Important You are here
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10 Important
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ)
Question 1 (a)
Question 1 (b) Important
Question 2
Question 3 Important
Question 4 (MCQ) Important
Question 5 (MCQ) Important
Question 6 (MCQ)
Question 7 (MCQ) Important
Question 8 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo