Check sibling questions


Transcript

Misc 1 Show that the function given by f(x) = logโก๐‘ฅ/๐‘ฅ is maximum at x = e.Let f(๐‘ฅ) = logโก๐‘ฅ/๐‘ฅ Finding fโ€™(๐’™) fโ€™(๐‘ฅ) = ๐‘‘/๐‘‘๐‘ฅ (logโก๐‘ฅ/๐‘ฅ) fโ€™(๐‘ฅ) = (๐‘‘(logโก๐‘ฅ )/๐‘‘๐‘ฅ " " . ๐‘ฅ โˆ’ ๐‘‘(๐‘ฅ)/๐‘‘๐‘ฅ " . log " ๐‘ฅ)/๐‘ฅ2 fโ€™(๐‘ฅ) = (1/๐‘ฅ ร— ๐‘ฅ โˆ’ logโก๐‘ฅ)/๐‘ฅ2 fโ€™(๐‘ฅ) = (1 โˆ’ logโก๐‘ฅ)/๐‘ฅ2 Putting fโ€™(๐’™) = 0 (1 โˆ’ logโก๐‘ฅ)/๐‘ฅ2=0 1 โ€“ log ๐‘ฅ = 0 log ๐‘ฅ = 1 ๐’™ = e Finding fโ€™โ€™(๐’™) fโ€™(๐‘ฅ) = (1 โˆ’ logโก๐‘ฅ)/๐‘ฅ2 Diff w.r.t. ๐‘ฅ fโ€™โ€™(๐‘ฅ) = ๐‘‘/๐‘‘๐‘ฅ ((1 โˆ’ logโก๐‘ฅ)/๐‘ฅ2) fโ€™โ€™(๐‘ฅ) = (๐‘‘(1 โˆ’ logโก๐‘ฅ )/๐‘‘๐‘ฅ . ๐‘ฅ2โˆ’ ๐‘‘(๐‘ฅ2)/๐‘‘๐‘ฅ . (1 โˆ’ logโก๐‘ฅ ))/(๐‘ฅ^2 )^2 = ((0 โˆ’ 1/๐‘ฅ) . ๐‘ฅ2 โˆ’ 2๐‘ฅ(1 โˆ’ logโก๐‘ฅ ))/๐‘ฅ4 = ((โˆ’1)/๐‘ฅ ร— ๐‘ฅ2 โˆ’ 2๐‘ฅ(1 โˆ’ logโก๐‘ฅ ))/๐‘ฅ^4 = (โˆ’๐‘ฅ โˆ’ 2๐‘ฅ(1 โˆ’ logโก๐‘ฅ ))/๐‘ฅ^4 = (โˆ’๐‘ฅ[1 + 2(1 โˆ’ logโก๐‘ฅ )])/๐‘ฅ4 = (โˆ’๐‘ฅ[3 โˆ’ 2 logโก๐‘ฅ ])/๐‘ฅ4 โˆด fโ€™โ€™(๐‘ฅ) = (โˆ’(3 โˆ’ 2 logโก๐‘ฅ ))/๐‘ฅ3 Putting ๐’™ = e fโ€™โ€™(๐‘’) = (โˆ’(3 โˆ’ 2 logโก๐‘’ ))/๐‘’3 = (โˆ’(3 โˆ’ 2))/๐‘’3 = (โˆ’1)/๐‘’3 = โ€“(1/๐‘’3) < 0 Since fโ€™โ€™(๐‘ฅ) < 0 at ๐‘ฅ = e . โˆด ๐‘ฅ = e is point of maxima Hence, f(๐‘ฅ) is maximum at ๐’™ = e.

  1. Chapter 6 Class 12 Application of Derivatives
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo