Last updated at Dec. 16, 2024 by Teachoo
Ex 2.2, 12 tan (sin−1 3/5 + cot−1 3/2 ) We write sin-1 3/5 & cot-1 3/2 in terms of tan-1 Let sin−1 3/5 = a & cot−1 3/2 = b So, our equation becomes tan (sin−1 𝟑/𝟓 + cot−1 𝟑/𝟐 ) = tan (a + b) = 𝒕𝒂𝒏〖𝒂 + 𝒕𝒂𝒏𝒃 〗/(𝟏 − 𝒕𝒂𝒏〖𝒂 𝒕𝒂𝒏𝒃 〗 ) Finding tan a Since a = sin−1 𝟑/𝟓 sin a = 3/5 cos a = √(1 −𝑠𝑖𝑛2𝑎) = √(1 −(3/5)^2 ) = √(16/25) = 4/5 tan a = sin𝑎/cos𝑎 = (3/5)/(4/5) = 3/5 × 5/4 = 𝟑/𝟒 Finding tan b Since b = cot −1 3/2 cot b = 3/2 tan b = 1/cot𝑏 = 1/(3/2) = 𝟐/𝟑 From (1) tan ("sin−1 " 𝟑/𝟓 " + cot−1 " 𝟑/𝟐) = tan〖𝑎 + tan𝑏 〗/(1 − tan〖𝑎 tan𝑏 〗 ) Putting tan a = 3/4 & tan b = 2/3 = (3/4 + 2/3 )/(1 − 3/4 × 2/3) = ((3(3) + 2(4) )/(4 × 3) )/( (4 × 3 − 3 × 2)/(4 × 3) ) = ((9 + 8 )/(4 × 3) )/( (12 − 6)/(4 × 3) ) = ((17 )/(4 × 3) )/( 6/(4 × 3) ) = 𝟏𝟕/𝟔
Ex 2.2
Ex 2.2, 2 Important
Ex 2.2, 3 Important
Ex 2.2, 4 Important
Ex 2.2, 5 Important
Ex 2.2, 6
Ex 2.2, 7 Important
Ex 2.2, 8
Ex 2.2, 9 Important
Ex 2.2, 10
Ex 2.2, 11
Ex 2.2, 12 Important You are here
Ex 2.2, 13 (MCQ) Important
Ex 2.2, 14 (MCQ) Important
Ex 2.2, 15 (MCQ)
Question 1
Question 2 Important
Question 3
Question 4 Important
Question 5 Important
Question 6 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo