Check sibling questions

 


Transcript

Ex 2.2, 7 Write the function in the simplest form: tan−1 ((3a2x −x3)/(a3 −3ax2)), α > 0; (−a)/√3 ≤ x ≤ a/√3 tan−1 ((3a2x − x3)/(a3 − 3ax2)) Putting x = a tan θ = tan−1 ((3a^2 (a tan θ) − (a tan θ)^3)/(a^3 − 3a (a tan θ)^2 )) = tan−1 ((3a^3 tan θ − a^3 tan^3 θ)/(a^3 − 3 a.a^2 tan^2 θ)) = tan−1 ((a^3 (3 tan θ − tan^3 θ))/(a^3 (1 − 3 tan^2 θ))) = tan−1 ((3 tan θ − tan^3 θ)/(1 − 3tan^2 θ)) = tan−1 (tan 3θ) = 3θ We know x = a tan θ 𝑥/𝑎 = tan θ tan θ = 𝑥/𝑎 θ = tan−1 (𝒙/𝒂) Hence, tan−1 ((3a2x − x3)/(a3 − 3ax2)) = 3θ = 3 tan−1 𝒙/𝒂 Hence proved

  1. Chapter 2 Class 12 Inverse Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo