Check sibling questions


Transcript

Example 14 Show that the area of the triangle formed by the lines y = m1 x + c1 , y = m2x + c2 and x = 0 is (๐‘_2 โˆ’ ๐‘_1 )^2/2|๐‘š_1 โˆ’ ๐‘š_2 | . There are three lines given in the graph x = 0 This line will lie be y-axis y = m1 x + c1 Putting x = 0 y = 0 + c1 = c1 Hence point is P(0, c1) y = m2 x + c2 Putting x = 0 y = 0 + c2 = c2 Hence point is Q(0, c2) Assuming both lines meet at R We need to find area ฮ” PQR To find area ฮ” PQR, we find coordinates of vertices Here P(0, c1), Q(0,c2) We find coordinates of point R Vertex R is the point of intersection of lines y = m1 x + c1 โ€ฆ(1) y = m2 x + c2 โ€ฆ(2) Subtracting (1) from (2) y โ€“ y = m1 x + c1 โ€“ (m2x + c2) 0 = m1 x + c1 โ€“ m2x โ€“ c2 0 = x(m1 โ€“ m2) + c1 โ€“ c2 โ€“x(m1 โ€“ m2) = c1 โ€“ c2 x(m1 โ€“ m2) = โ€“(c1 โ€“ c2) x(m1 โ€“ m2) = c2 โ€“ c1 x = (๐‘_2 โˆ’ ๐‘_1)/(๐‘š_1 โˆ’ ใ€– ๐‘šใ€—_2 ) Putting value of x in (1) y = m1x + c1 y = m1 ((๐‘_2 โˆ’ ๐‘_1)/(๐‘š_1 โˆ’ ๐‘š_2 )) + c1 y = (๐‘š_1 (๐‘_2 โˆ’ ๐‘_1 ) + ใ€– ๐‘ใ€—_1 (๐‘š_1 โˆ’ ๐‘š_2))/(๐‘š_1 โˆ’ ๐‘š_2 ) y = (๐‘š_1 ๐‘_2 โˆ’ ๐‘š_1 ๐‘_1 + ใ€– ๐‘ใ€—_1 ๐‘š_1 โˆ’ ใ€– ๐‘ใ€—_1 ๐‘š_2)/(๐‘š_1 โˆ’ ๐‘š_2 ) y = (๐‘š_1 ๐‘_(2 ) โˆ’ ใ€– ๐‘ใ€—_1 ๐‘š_2)/(๐‘š_1 โˆ’ ๐‘š_2 ) โˆด Vertex R is ((๐‘_2 โˆ’ ๐‘_1)/(๐‘š_1 โˆ’ ๐‘š_2 ) ", " (๐‘š_1 ๐‘_(2 ) โˆ’ ๐‘š_2 ใ€– ๐‘ใ€—_1)/(๐‘š_1 โˆ’ ๐‘š_2 )) The vertices of โˆ† PRQ is P(0, c1), R((๐‘_2 โˆ’ ๐‘_1)/(๐‘š_1 โˆ’ ๐‘š_2 ) ", " (๐‘š_1 ๐‘_(2 ) โˆ’ ๐‘š_2 ใ€– ๐‘ใ€—_1)/(๐‘š_1 โˆ’ ๐‘š_2 )) & Q(0, c2) We know that Area of triangle whose vertices are (x1, y1) (x2, y2) (x3, y3) is 1/2 |"x1" ("y2 โ€“ y3" ) + ๐‘ฅ2 (๐‘ฆ3 โˆ’ ๐‘ฆ1) + ๐‘ฅ3(๐‘ฆ1 โˆ’ ๐‘ฆ2)| For โˆ† PRQ, (x1, y1) = P(0, c1) (x2,y2) = R ((๐‘_2 โˆ’ ๐‘_1)/(๐‘š_1 โˆ’ ๐‘š_2 ) ", " (๐‘š_1 ๐‘_(2 ) โˆ’ ๐‘š_2 ใ€– ๐‘ใ€—_1)/(๐‘š_1 โˆ’ ๐‘š_2 )) (x3,y3) = Q (0, c2) Area โˆ† PRQ = โ– 8(1/2 " " |0((๐‘š_1 ๐‘_(2 ) โˆ’ ๐‘š_2 ใ€– ๐‘ใ€—_1)/(๐‘š_1 โˆ’ ๐‘š_2 ) โˆ’๐‘2) + (๐‘_2 โˆ’ ๐‘_1)/(๐‘š_1 โˆ’ ๐‘š_2 ) (๐‘2 โˆ’๐‘1) + 0(๐‘1 โˆ’ (๐‘š_1 ๐‘_(2 ) โˆ’ ๐‘š_2 ใ€– ๐‘ใ€—_1)/(๐‘š_1 โˆ’ ๐‘š_2 ))| ) = โ– 8(1/2 " " |โ–ˆ(0 + (๐‘2 โˆ’ ๐‘1)2/(๐‘š1 โˆ’ ๐‘š2) + 0)| ) = โ– 8(1/2 " " |(ใ€–(๐‘ใ€—_2 โˆ’ ๐‘_1)2)/(๐‘š_1 โˆ’ ๐‘š_2 )| ) = 1/2 (๐‘2 โˆ’ ๐‘1)2/|๐‘š1 โˆ’ ๐‘š2| โˆด Area required = 1/2 (๐‘2 โˆ’ ๐‘1)2/|๐‘š1 โˆ’ ๐‘š2| Hence proved

  1. Chapter 9 Class 11 Straight Lines
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo