Check sibling questions


Transcript

Question 6 Reduce the equation √3x + y − 8 = 0 into normal form. Find the values of p and ω. √3x + y − 8 = 0 " " √3 "x + y" = 8 Dividing by √((√3)2 + (1)2) = √(3 + 1) = √4 = 2 (√3 𝑥)/2 + 𝑦/2 = 8/2 (√3 𝑥)/2 + 𝑦/2 = 4 𝑥(√3/2) + 𝑦(1/2) = 4 Normal form is x cos 𝜔 + y sin 𝜔 = p Where p is the perpendicular distance from origin & 𝜔 is the angle between perpendicular & the positive x-axis Normal form of any line is x cos 𝜔 + y sin 𝜔 = p Comparing (1) & (2) p = 4 & cos 𝜔 = √3/2 & sin 𝜔 = 1/2 We know that cos 30° = √3/2 and sin 30° = 1/2 Thus, 𝜔 = 30° So, 𝜔 = 30° & p = 4 Thus, the normal form of line is x cos 30° + y sin 30° = 4

  1. Chapter 9 Class 11 Straight Lines
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo