Ex 8.2, 25 - Chapter 8 Class 11 Sequences and Series
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex9.3,25 If a, b, c and d are in G.P. show that . (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 We know that a, ar , ar2 , ar3, …. are in G.P. with first term a & common ratio r Given a, b, c, d are in G.P. So, a = a b = ar c = ar2 d = ar3 We need to show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 Taking L.H.S (a2 + b2 + c2) (b2 + c2 + d2) Putting values of b = ar , c = ar2 , d = ar3 (a2 + (ar)2 + (ar2)2) ((ar)2 + (ar2)2 + (ar3)2) = (a2 + a2r2 + a2r4) (a2r2 + a2r2 + a2r6) = ["a2(1 + r2 + r4)" ] ["a2r2(1 + r2 + r4)" ] = ["a2" ] ["a2r2" ]"(1 + r2 + r4)" "(1 + r2 + r4)" = ["a2 a2 r2" ]"(1 + r2 + r4)"2 = ["a4 r2" ]"(1 + r2 + r4)"2 = "a4 r2(1 + r2 + r4)"2 Taking R.H.S (ab + bc + cd)2 Putting values of b = ar , c = ar2 , d = ar3 = ( a × ar + ar × ar2 + ar2 × ar3) 2 = ( a2r + a2r3 + a2r5 )2 = ["a2r (1 + r2 + r4)" ]^2 = (a2r)2 (1 + r2 + r4)2 = a4r2 (1 + r2 + r4)2 = L.H.S Thus L.H.S = R.H.S Hence proved
Ex 8.2
Ex 8.2, 2
Ex 8.2, 3 Important
Ex 8.2, 4
Ex 8.2, 5 (a)
Ex 8.2, 5 (b) Important
Ex 8.2, 5 (c)
Ex 8.2, 6
Ex 8.2, 7 Important
Ex 8.2, 8
Ex 8.2, 9 Important
Ex 8.2, 10
Ex 8.2, 11 Important
Ex 8.2, 12
Ex 8.2, 13
Ex 8.2, 14 Important
Ex 8.2, 15
Ex 8.2, 16 Important
Ex 8.2, 17 Important
Ex 8.2, 18 Important
Ex 8.2, 19
Ex 8.2, 20
Ex 8.2, 21
Ex 8.2, 22 Important
Ex 8.2, 23 Important
Ex 8.2, 24
Ex 8.2, 25 You are here
Ex 8.2, 26 Important
Ex 8.2, 27 Important
Ex 8.2, 28
Ex 8.2, 29 Important
Ex 8.2, 30 Important
Ex 8.2, 31
Ex 8.2, 32 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo