Last updated at Dec. 16, 2024 by Teachoo
Ex 8.2, 23 If the first and the nth term of a G.P. are a and b, respectively, and if P is the product of n terms, prove that P2 = (ab)n. Let a be the first term of G.P & r be the common ratio of G.P Given, first term of G.P = a We know that nth term of G.P = arn-1 b = arn-1 Now P is the product of n terms P = a1 a2 a3 an = a ar ar2 ar3 arn 1 = (a a a) (r r2 rn 1) = an ^(1+2+ +( 1)) = an ^(( ( 1))/2) Thus, P = an ^(( ( 1))/2) We need to prove P2 = (ab)n. Taking L.H.S P2 = ("an " r^((n(n 1))/2) )^2 = ( ^( 2) " " r^((n(n 1))/2 2) ) = ( ^2 " " r^(n(n 1)) ) = ( ^2 " " r^((n 1)) )^ = ( r^((n 1)) )^ = ( ( r^((n 1) )))^ = ( )^ = ( )^ = R.H.S Thus, P2 = ( )^ Hence proved
Ex 8.2
Ex 8.2, 2
Ex 8.2, 3 Important
Ex 8.2, 4
Ex 8.2, 5 (a)
Ex 8.2, 5 (b) Important
Ex 8.2, 5 (c)
Ex 8.2, 6
Ex 8.2, 7 Important
Ex 8.2, 8
Ex 8.2, 9 Important
Ex 8.2, 10
Ex 8.2, 11 Important
Ex 8.2, 12
Ex 8.2, 13
Ex 8.2, 14 Important
Ex 8.2, 15
Ex 8.2, 16 Important
Ex 8.2, 17 Important
Ex 8.2, 18 Important
Ex 8.2, 19
Ex 8.2, 20
Ex 8.2, 21
Ex 8.2, 22 Important
Ex 8.2, 23 Important You are here
Ex 8.2, 24
Ex 8.2, 25
Ex 8.2, 26 Important
Ex 8.2, 27 Important
Ex 8.2, 28
Ex 8.2, 29 Important
Ex 8.2, 30 Important
Ex 8.2, 31
Ex 8.2, 32 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo