Slide23.JPG

Slide24.JPG

  1. Chapter 14 Class 8 Factorisation
  2. Serial order wise

Transcript

Ex 14.2, 3 (Method 1) Factorise the expressions. (iii) 2๐‘ฅ^3 + 2ใ€–๐‘ฅ๐‘ฆใ€—^2 + 2x๐‘ง^2 2๐‘ฅ^3 = 2 ร— ๐‘ฅ^3 = 2 ร— ๐‘ฅ^3 2ใ€–๐‘ฅ๐‘ฆใ€—^2= 2 ร— ๐‘ฅ ร— ๐‘ฆ^2 = 2 ร— ๐‘ฅ ร— ๐‘ฆ ร— ๐‘ฆ 2x๐‘ง^2 = 2 ร— ๐‘ฅ ร— ๐‘ง^2 = 2 ร— ๐‘ฅ ร— ๐‘ง ร— ๐‘ง 2๐‘ฅ^3 + 2ใ€–๐‘ฅ๐‘ฆใ€—^2 + 2x๐‘ง^2 = (2 ร— ๐‘ฅ ร— ๐‘ฅ ร— ๐‘ฅ) + (2 ร— ๐‘ฅ ร— ๐‘ฆ ร— ๐‘ฆ) + (2 ร— ๐‘ฅ ร— ๐‘ง ร— ๐‘ง) Taking 2 ร— ๐‘ฅ Common, = 2 ร— ๐‘ฅ ((๐‘ฅ ร— ๐‘ฅ) + (y ร— y) + (z ร— z)) = 2๐’™ (๐’™^๐Ÿ + ๐’š^๐Ÿ + ๐’›^๐Ÿ) Ex 14.2, 3 (Method 2) Factorise the expressions. (iii) 2๐‘ฅ^3 + 2ใ€–๐‘ฅ๐‘ฆใ€—^2 + 2x๐‘ง^2 2๐‘ฅ^3 + 2ใ€–๐‘ฅ๐‘ฆใ€—^2 + 2x๐‘ง^2 = (2 ร— ๐‘ฅ^3) + (2 ร— ใ€–๐‘ฅ๐‘ฆใ€—^2) + (2 ร— ๐‘ฅ๐‘ง^2) Taking 2 common = 2 (๐‘ฅ^3 + ใ€–๐‘ฅ๐‘ฆใ€—^2 + ๐‘ฅ๐‘ง^2) = 2 ((๐‘ฅ ร— ๐‘ฅ^2) + (๐‘ฅ ร— ๐‘ฆ^2) + (๐‘ฅ ร— ๐‘ง^2)) Taking ๐‘ฅ common, = 2๐’™ (๐’™^๐Ÿ + ๐’š^๐Ÿ + ๐’›^๐Ÿ) 2๐‘ฅ^3 + 2ใ€–๐‘ฅ๐‘ฆใ€—^2 + 2x๐‘ง^2 = (2 ร— ๐‘ฅ^3) + (2 ร— ใ€–๐‘ฅ๐‘ฆใ€—^2) + (2 ร— ๐‘ฅ๐‘ง^2) Taking 2 common = 2 (๐‘ฅ^3 + ใ€–๐‘ฅ๐‘ฆใ€—^2 + ๐‘ฅ๐‘ง^2) = 2 ((๐‘ฅ ร— ๐‘ฅ^2) + (๐‘ฅ ร— ๐‘ฆ^2) + (๐‘ฅ ร— ๐‘ง^2)) Taking ๐‘ฅ common, = 2๐’™ (๐’™^๐Ÿ + ๐’š^๐Ÿ + ๐’›^๐Ÿ)

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.