Ex 12.2
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (vii) Important
Ex 12.2, 1 (viii)
Ex 12.2, 2 (i)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iii)
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 3 (i)
Ex 12.2, 3 (ii) Important You are here
Ex 12.2, 3 (iii)
Ex 12.2, 3 (iv) Important
Ex 12.2, 3 (v) Important
Ex 12.2, 3 (vi)
Ex 12.2, 3 (vii)
Ex 12.2, 3 (viii) Important
Ex 12.2, 3 (ix)
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Ex 12.2, 5 (i)
Ex 12.2, 5 (ii) Important
Ex 12.2, 5 (iii)
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 3 (Method 1) Factorise the expressions. (ii) 7〖𝑝 〗^2 + 21𝑞^27〖p 〗^2 + 21q^2 = 7〖p 〗^2 + (7 × 3) 〖q 〗^2 Taking 7 Common, = 7 (𝒑^𝟐 + 3𝒒^𝟐) Ex 12.2, 3 (Method 2) Factorise the expressions. (ii) 7〖𝑝 〗^2 + 21𝑞^27〖p 〗^2 21𝑞^2 So, 7 is the only common factor. 7〖𝑝 〗^2 + 21𝑞^2 = (7 × p × p) + (3 × 7 × q × q) Taking 7 Common, = 7 × ((p × p) + (3 × q × q)) = 7 × (p^2 + 3q^2) = 7 (𝒑^𝟐 + 3𝒒^𝟐) = 7 × 〖p 〗^2 = 21 × 𝑞^2 = 7 × p × p = 3 × 7 × q × q = 3 × 7 × q × q