Ex 12.2
Ex 12.2, 1 (ii)
Ex 12.2, 1 (iii) Important
Ex 12.2, 1 (iv) Important
Ex 12.2, 1 (v)
Ex 12.2, 1 (vi)
Ex 12.2, 1 (vii) Important
Ex 12.2, 1 (viii)
Ex 12.2, 2 (i)
Ex 12.2, 2 (ii) Important
Ex 12.2, 2 (iii)
Ex 12.2, 2 (iv) Important
Ex 12.2, 2 (v)
Ex 12.2, 2 (vi)
Ex 12.2, 2 (vii) Important
Ex 12.2, 2 (viii) Important
Ex 12.2, 3 (i) You are here
Ex 12.2, 3 (ii) Important
Ex 12.2, 3 (iii)
Ex 12.2, 3 (iv) Important
Ex 12.2, 3 (v) Important
Ex 12.2, 3 (vi)
Ex 12.2, 3 (vii)
Ex 12.2, 3 (viii) Important
Ex 12.2, 3 (ix)
Ex 12.2, 4 (i)
Ex 12.2, 4 (ii) Important
Ex 12.2, 4 (iii)
Ex 12.2, 4 (iv) Important
Ex 12.2, 4 (v) Important
Ex 12.2, 5 (i)
Ex 12.2, 5 (ii) Important
Ex 12.2, 5 (iii)
Last updated at April 16, 2024 by Teachoo
Ex 12.2, 3 (Method 1) Factorise the expressions. (i) a𝑥^2 + b𝑥a𝑥^2 + b𝑥 = (a × 𝑥 × 𝑥) + (b × 𝑥) Taking 𝑥 common, = 𝒙 (a𝒙 + b) Ex 12.2, 3 (Method 2) Factorise the expressions. (i) a𝑥^2 + b𝑥a𝑥^2 = a × 𝑥 × 𝑥 b𝑥 = b × 𝑥 So, 𝒙 is a common factor. a𝑥^2 + b𝑥 = (a × 𝑥 × 𝑥) + (b × 𝑥) Taking 𝑥 common, = 𝑥 ((a × 𝑥) + b) = 𝒙 (a𝒙 + b)