
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Factorisation using common factors
Ex 12.1, 1 (i)
Ex 12.1, 1 (ii)
Ex 12.1, 1 (iii) Important
Ex 12.1, 1 (iv) Important
Ex 12.1, 1 (v)
Ex 12.1, 1 (vi) Important
Ex 12.1, 1 (vii)
Ex 12.1, 1 (viii) Important
Example 2 Important
Example 1
Ex 12.1, 2 (i)
Ex 12.1, 2 (ii) Important
Ex 12.1, 2 (iii)
Ex 12.1, 2 (iv) Important
Ex 12.1, 2 (v)
Ex 12.1, 2 (vi)
Ex 12.1, 2 (vii)
Ex 12.1, 2 (viii) Important
Ex 12.1, 2 (ix) You are here
Ex 12.1, 2 (x) Important
Last updated at May 29, 2023 by Teachoo
Ex 12.1, 2 (Method 1) Factorise the following expressions. (ix) π₯^2 y z + x π¦^2z + x y π§^2 π₯^2 y z = π₯^2 Γ y Γ z = π₯ Γ π₯ Γ y Γ z π₯π¦^2z = π₯ Γ π¦^2 Γ z = π₯ Γ y Γ y Γ z π₯yπ§^2 = π₯ Γ y Γ π§^2 = π₯ Γ y Γ z Γ z So, x, y and z are the common factors. π₯^2 y z + π₯π¦^2z + π₯yπ§^2 = (π₯ Γ π₯ Γ y Γ z) + (π₯ Γ y Γ y Γ z) + (π₯ Γ y Γ z Γ z) Taking π₯ Γ y Γ z common, = π₯ Γ y Γ z Γ (π₯ + y + z) = πyz (π + y + z) Ex 12.1, 2 (Method 2) Factorise the following expressions. (ix) π₯^2 y z + x π¦^2z + x y π§^2 π₯^2 y z + x π¦^2z + x y π§^2 = (π₯ Γ π₯yz) + (y Γ π₯yz) + (z Γ π₯yz) Taking π₯yz common, = πyz (π + y + z)