Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Factorisation using common factors

Factorization by common factors

Ex 12.1, 1 (i)

Ex 12.1, 1 (ii)

Ex 12.1, 1 (iii) Important

Ex 12.1, 1 (iv) Important

Ex 12.1, 1 (v)

Ex 12.1, 1 (vi) Important

Ex 12.1, 1 (vii)

Ex 12.1, 1 (viii) Important

Example 2 Important

Example 1

Ex 12.1, 2 (i)

Ex 12.1, 2 (ii) Important

Ex 12.1, 2 (iii)

Ex 12.1, 2 (iv) Important

Ex 12.1, 2 (v) You are here

Ex 12.1, 2 (vi)

Ex 12.1, 2 (vii)

Ex 12.1, 2 (viii) Important

Ex 12.1, 2 (ix)

Ex 12.1, 2 (x) Important

Last updated at May 29, 2023 by Teachoo

Ex 12.1, 2 (Method 1) Factorise the following expressions. (v) 20 π^2 m + 30 a l m 20 π^2 m = 20 Γ π^2 Γ m = 2 Γ 2 Γ 5 Γ π^2 Γ m = 2 Γ 2 Γ 5 Γ l Γ l Γ m 30 alm = 30 Γ a Γ l Γ m = 2 Γ 3 Γ 5 Γ a Γ l Γ m So, 20 π^2m = 2 Γ 2 Γ 5 Γ l Γ l Γ m 30 alm = 2 Γ 3 Γ 5 Γ a Γ l Γ m So, 2, 5, l and m are the common factors. Now, 20 π^2m + 30 alm = (2 Γ 2 Γ 5 Γ l Γ l Γ m) + (2 Γ 3 Γ 5 Γ a Γ l Γ m) Taking 2 Γ 5 Γ l Γ m common = 2 Γ 5 Γ l Γ m (2 Γ l + 3 Γ a) = 10lm(2l + 3a) Ex 12.1, 2 (Method 2) Factorise the following expressions. (v) 20 π^2 m + 30 a l m 20 π^2 m + 30 a l m = (10 Γ 2) π^2 m + (10 Γ 3) alm Taking 10 common, = 10 Γ (2π^2m + 3 alm) = 10 Γ ((2l Γ lm) + (3a Γ lm)) Taking lm common, = 10 Γ lm (2l + 3a) = 10lm (2l + 3a)