

Get live Maths 1-on-1 Classs - Class 6 to 12
Factorisation using common factors
Ex 12.1, 1 (i)
Ex 12.1, 1 (ii)
Ex 12.1, 1 (iii) Important
Ex 12.1, 1 (iv) Important
Ex 12.1, 1 (v)
Ex 12.1, 1 (vi) Important
Ex 12.1, 1 (vii)
Ex 12.1, 1 (viii) Important
Example 2 Important
Example 1
Ex 12.1, 2 (i)
Ex 12.1, 2 (ii) Important
Ex 12.1, 2 (iii)
Ex 12.1, 2 (iv) Important
Ex 12.1, 2 (v)
Ex 12.1, 2 (vi) You are here
Ex 12.1, 2 (vii)
Ex 12.1, 2 (viii) Important
Ex 12.1, 2 (ix)
Ex 12.1, 2 (x) Important
Last updated at May 18, 2023 by Teachoo
Ex 12.1, 2 (Method 1) Factorise the following expressions. (vi) 5 π₯^2 y β 15 γπ₯π¦γ^2 5 π₯^2 y = 5 Γ π₯ Γ π₯ Γ y 15 π₯y^2 = 15 Γ π₯ Γ π¦^2 = 3 Γ 5 Γ π₯ Γ π¦^2 = 3 Γ 5 Γ π₯ Γ π¦ Γ π¦ So, 5 π₯^2 y = 5 Γ π₯ Γ π₯ Γ y 15π₯^2 y = 3 Γ 5 Γ π₯ Γ π₯ Γ y So, 5, π₯ and y are the common factors. Now, 5 π₯^2y β 15 γπ₯π¦γ^2 = (5 Γ π₯ Γ π₯ Γ y) β (3 Γ 5 Γ π₯ Γ y Γ y) Taking 5 Γ π₯ Γ y common = 5 Γ π₯ Γ y (π₯ β (3 Γ y)) = 5xy (x β 3y) Ex 12.1, 2 (Method 2) Factorise the following expressions. (vi) 5 π₯^2 y β 15 γπ₯π¦γ^2 5 π₯^2y β 15 γπ₯π¦γ^2 = 5 π₯^2y β 5 Γ 3 Γ γπ₯π¦γ^2 Taking 5 Γ π₯ Γ y common = 5 (π₯^2y β 3γπ₯π¦γ^2) = 5 ((π₯π¦ Γ π₯) β (π₯π¦ Γ 3y)) Taking xy common, = 5πy (π β 3y)