Check sibling questions

Ex 14.1, 2 (vi) - Factorise  5 x^2 y - 15 xy^2  - Chapter 14 Class 8

Ex 14.1, 2 (vi) - Chapter 14 Class 8 Factorisation - Part 2
Ex 14.1, 2 (vi) - Chapter 14 Class 8 Factorisation - Part 3

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 12.1, 2 (Method 1) Factorise the following expressions. (vi) 5 π‘₯^2 y – 15 γ€–π‘₯𝑦〗^2 5 π‘₯^2 y = 5 Γ— π‘₯ Γ— π‘₯ Γ— y 15 π‘₯y^2 = 15 Γ— π‘₯ Γ— 𝑦^2 = 3 Γ— 5 Γ— π‘₯ Γ— 𝑦^2 = 3 Γ— 5 Γ— π‘₯ Γ— 𝑦 Γ— 𝑦 So, 5 π‘₯^2 y = 5 Γ— π‘₯ Γ— π‘₯ Γ— y 15π‘₯^2 y = 3 Γ— 5 Γ— π‘₯ Γ— π‘₯ Γ— y So, 5, π‘₯ and y are the common factors. Now, 5 π‘₯^2y – 15 γ€–π‘₯𝑦〗^2 = (5 Γ— π‘₯ Γ— π‘₯ Γ— y) βˆ’ (3 Γ— 5 Γ— π‘₯ Γ— y Γ— y) Taking 5 Γ— π‘₯ Γ— y common = 5 Γ— π‘₯ Γ— y (π‘₯ βˆ’ (3 Γ— y)) = 5xy (x βˆ’ 3y) Ex 12.1, 2 (Method 2) Factorise the following expressions. (vi) 5 π‘₯^2 y – 15 γ€–π‘₯𝑦〗^2 5 π‘₯^2y – 15 γ€–π‘₯𝑦〗^2 = 5 π‘₯^2y – 5 Γ— 3 Γ— γ€–π‘₯𝑦〗^2 Taking 5 Γ— π‘₯ Γ— y common = 5 (π‘₯^2y βˆ’ 3γ€–π‘₯𝑦〗^2) = 5 ((π‘₯𝑦 Γ— π‘₯) βˆ’ (π‘₯𝑦 Γ— 3y)) Taking xy common, = 5𝒙y (𝒙 βˆ’ 3y)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.