Chapter 7 Class 12 Integrals
Concept wise

    Slide24.JPG

Slide25.JPG
Slide26.JPG Slide27.JPG Slide28.JPG

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Example 27 (Method 1) Evaluate ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 ) 𝑑π‘₯ Step 1 : Let F(π‘₯)=∫1β–’tan^(βˆ’1)⁑π‘₯/(1+γ€– π‘₯γ€—^2 ) 𝑑π‘₯ Put tan^(βˆ’1)⁑π‘₯=𝑑 Differentiating w.r.t.π‘₯ 𝑑/𝑑π‘₯ (tan^(βˆ’1)⁑π‘₯ )=𝑑𝑑/𝑑π‘₯ 1/(1 + π‘₯^2 )=𝑑𝑑/𝑑π‘₯ Therefore, ∫1β–’tan^(βˆ’1)⁑π‘₯/(1+γ€– π‘₯γ€—^2 ) 𝑑π‘₯=∫1▒〖𝑑/(1+π‘₯^2 ) Γ— (1+π‘₯^2 )𝑑𝑑〗 =∫1▒〖𝑑 𝑑𝑑〗 =𝑑^2/2 Putting 𝑑=γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1)⁑π‘₯ =(tan^(βˆ’1)⁑π‘₯ )^2/2 Hence 𝐹(π‘₯)=(tan^(βˆ’1)⁑π‘₯ )^2/2 Step 2 : ∫1β–’γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 )=𝐹(1)βˆ’F(0) =1/2 (tan^(βˆ’1)⁑1 )^2 βˆ’1/2 (tan^(βˆ’1)⁑0 )^2 =1/2 (πœ‹/4)^2βˆ’1/2 (0)^2 =1/2 πœ‹^2/16 = 𝝅^𝟐/πŸ‘πŸ Example 27 (Method 2) Evaluate ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 ) 𝑑π‘₯ Put 𝑑=tan^(βˆ’1)⁑π‘₯ Differentiating w.r.t.π‘₯ 𝑑𝑑/𝑑π‘₯=𝑑/𝑑π‘₯ (tan^(βˆ’1)⁑π‘₯ ) 𝑑𝑑/𝑑π‘₯=1/(1 + π‘₯^2 ) (1+π‘₯^2 )𝑑𝑑=𝑑π‘₯ Hence when value of x varies from 0 to 1, value of t varies from 0 to πœ‹/4 Therefore, ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 )=∫_0^(πœ‹/4)▒𝑑/(1 + π‘₯^2 ) 𝑑π‘₯ (1+π‘₯^2 )𝑑𝑑 =∫_0^(πœ‹/4)β–’γ€– 𝑑 𝑑𝑑〗 =[𝑑^2/2]_0^(πœ‹/4) =1/2 [(πœ‹/4)^2βˆ’(0)^2 ] =1/2 Γ— πœ‹^2/16 = 𝝅^𝟐/πŸ‘πŸ

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.