Slide28.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Slide29.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

 

Slide30.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Share on WhatsApp

Transcript

Example 9 Prove that the function given by f (x) = cos x is (a) strictly decreasing in (0, Ο€) f(π‘₯) = cos π‘₯ f’(𝒙) = – sin 𝒙 Since, sin π‘₯ > 0 for π‘₯ ∈ (0, Ο€) So, –sin 𝒙 < 0 for π‘₯ ∈ (0, Ο€) ∴ f’(π‘₯) < 0 for π‘₯ ∈ (0 , Ο€) So, f is strictly decreasing in (0 , Ο€) Example 9 Prove that the function given by f (x) = cos x is (b) strictly increasing in (Ο€, 2Ο€), and f (π‘₯) = cos π‘₯ f’(𝒙) = βˆ’ sin 𝒙 Since sin π‘₯ < 0 for π‘₯ ∈ (Ο€ , 2Ο€) So, – sin 𝒙 > 0 for π‘₯ ∈ (Ο€ , 2Ο€) ∴ f’(π‘₯) > 0 for π‘₯ ∈ (Ο€ , 2Ο€) So, f is strictly increasing in (Ο€ , 2Ο€) (0 , 2Ο€) = (0 , Ο€) βˆͺ (Ο€ , 2Ο€) From 1st part f(π‘₯) is strictly decreasing in (0 , Ο€) And from 2nd part f(π‘₯) is strictly increasing in (Ο€ , 2Ο€) Thus, f(𝒙) is neither increasing nor decreasing in (0, 2Ο€)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo