Misc 6 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at May 26, 2023 by Teachoo
Since NCERT Books are changed, we are still changing the name of content in images and videos. It would take some time.
But, we assure you that the question is what you are searching for, and the content is the best -Teachoo Promise . If you have any feedback, please contact us .
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Transcript
Misc 6 (Method 1) Differentiate w.r.t. x the function, γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘γπ₯ γ ) β β(1 βsinβ‘π₯ )) ] , 0<π₯< π/2 Let π¦= γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) +β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘γπ₯ γ )ββ(1 β sinβ‘π₯ )) ]
Rationalizing the sum
π¦= γπππ‘γ^(β1 ) [((β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ )))/((β(1 + sinβ‘γπ₯ γ )β β(1 β sinβ‘π₯ )) ) Γ((β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ )))/((β(1+sinβ‘γπ₯ γ )+ β(1 β sinβ‘π₯ )) )]
π¦= γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))^2/((β(1 + sinβ‘γπ₯ γ )β β(1 βγ sinγβ‘π₯ )) (β(1 + sinβ‘γπ₯ γ )+ β(1 βγ sinγβ‘π₯ )) ) ]
= γπππ‘γ^(β1 ) [((β(1 + sinβ‘π₯ ) )^2 + (β(1 β sinβ‘π₯ ) )^2+ 2(β(1 + sinβ‘γπ₯ γ ))(β(1 βγ sinγβ‘π₯ )))/((β(1 + sinβ‘γπ₯ γ )β β(1 β γ sinγβ‘π₯ )) (β(1 + sinβ‘γπ₯ γ )+ β(1 β sinβ‘π₯ )) ) ]
= γπππ‘γ^(β1 ) [((1 + sinβ‘π₯ ) + (1 β sinβ‘π₯ ) + 2β((1 + sinβ‘π₯ ) (1 β sinβ‘π₯ ) ))/((β(1 + sinβ‘γπ₯ γ ))^2 β (β(1 β sinβ‘π₯ ))^2 ) ]
= γπππ‘γ^(β1 ) [(1 + sinβ‘π₯ + 1 β sinβ‘π₯ + 2β((1)^2 β sin^2β‘π₯ ))/(1 + sinβ‘π₯ β 1 + sinβ‘π₯ ) ]
= γπππ‘γ^(β1 ) [(2 + 2β(1 β sin^2β‘π₯ ))/(2 sinβ‘π₯ ) ]
= γπππ‘γ^(β1 ) [(2 (1 + β(π β γπππγ^πβ‘π ) ) )/(2 sinβ‘π₯ )]
= γπππ‘γ^(β1 ) [(1 + β(γπππγ^πβ‘π ) )/sinβ‘π₯ ]
= γπππ‘γ^(β1 ) [(1 + πππβ‘π )/πππβ‘π ]
= γπππ‘γ^(β1 ) [(1 + π γπππγ^πβ‘γπ/πγ β π )/(π πππβ‘γ π/π γ γππ¨π¬ γβ‘γπ/πγ )]
= γπππ‘γ^(β1 ) [(2 cos^2β‘γπ₯/2γ )/(2 sinβ‘γ π₯/2 γ γcos γβ‘γπ₯/2γ )]
= γπππ‘γ^(β1 ) [(γcos γβ‘γπ₯/2γ )/sinβ‘γ π₯/2 γ ]
= γπππ‘γ^(β1 ) [cotβ‘(π₯/2) ]
= π₯/2
We know that
sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ
Replacing ΞΈ by π/2
sin ΞΈ = 2 πππβ‘γπ½/πγ πππβ‘γπ½/πγ
and
cos 2ΞΈ = 2cos2 ΞΈ β 1
Replacing ΞΈ by π/2
cos ΞΈ = 2cos2 π½/π β 1
Thus,
π= π/π
Differentiating π€.π.π‘.π₯
ππ¦/ππ₯ = π/ππ₯ (π₯/2)
ππ¦/ππ₯ = 1/2 ππ₯/ππ₯
π
π/π
π = π/π
Misc 6 (Method 2) Differentiate w.r.t. x the function, γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘γπ₯ γ ) β β(1 β sinβ‘π₯ )) ] , 0<π₯< π/2 Let π¦= γπππ‘γ^(β1 ) [(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 +γ sinγβ‘γπ₯ γ ) β β(1 β sinβ‘π₯ )) ]
Finding β(π + πππβ‘π ) and β(π β πππβ‘π )
γπππγ^π π½+γπππγ^πβ‘π½=1
Replacing π by π₯/2
π ππ2 π₯/2 + γπππ γ^2 π₯/2 = 1
πππβ‘ππ½=2 π ππβ‘γπ πππ β‘π γ
Replacing π by π₯/2
πππβ‘π = 2 π ππβ‘π₯/2 πππ β‘π₯/2
β("1 + sin x" )
= β((γπ ππγ^2 π₯/2 + γπππ γ^2 π₯/2)" + 2 sin " π₯/2 " cos " π₯/2)
= β((πππ π₯/2 +sinβ‘γπ₯/2γ )^2 )
= πππ π/π +πππβ‘γπ/πγ
β("1 " β" sin x" )
= β((γπ ππγ^2 π₯/2 + γπππ γ^2 π₯/2)" β 2 sin " π₯/2 " cos " π₯/2)
= β((πππ π₯/2 βsinβ‘γπ₯/2γ )^2 )
= πππ π/π +πππβ‘γπ/πγ
β("1 " β" sin x" )
= β((γπ ππγ^2 π₯/2 + γπππ γ^2 π₯/2)" β 2 sin " π₯/2 " cos " π₯/2)
= β((πππ π₯/2 βsinβ‘γπ₯/2γ )^2 )
= πππ π/π +πππβ‘γπ/πγ
Thus, our equation becomes
y = γπππ γ^(β1) |(β(1 + sinβ‘π₯ ) + β(1 β sinβ‘π₯ ))/(β(1 + sinβ‘π₯ ) β β(1 β sinβ‘π₯ ))|
Substituting value of β(1+π ππβ‘π₯ ) & β(1βπ ππβ‘π₯ ) from (1) & (2).
y = cotβ1 [((γcos γβ‘γπ₯/2γ + γsin γβ‘γπ₯/2γ ) + (γcos γβ‘γπ₯/2γ β γsin γβ‘γπ₯/2γ ))/((γcos γβ‘γπ₯/2γ + γsin γβ‘γπ₯/2γ ) + (γcos γβ‘γπ₯/2γ β γsin γβ‘γπ₯/2γ ) )]
π¦= γπππ‘γ^(β1 ) [(πππ β‘γ π₯/2γ + γπ ππ γβ‘γπ₯/2γ + πππ β‘γ π₯/2γ β γπ ππ γβ‘γπ₯/2γ)/(πππ β‘γ π₯/2γ + π ππβ‘γ π₯/2γ β γπππ γβ‘γπ₯/2γ β π ππβ‘γ π₯/2γ ) ]
π¦= γπππ‘γ^(β1 ) [(2 γπππ γβ‘γπ₯/2γ )/(2 π ππβ‘γ π₯/2γ ) ]
π¦= γπππ‘γ^(β1 ) [πππ‘ (π₯ )/2 ]
π= π/π
Differentiating π€.π.π‘.π₯
ππ¦/ππ₯ = π(π₯/2)/ππ₯
π
π/π
π = π/π
Show More