Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Examples

Example 1

Example 2

Example 3 Important

Example 4

Example 5 Important

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11 Important

Example 12

Example 13 Important

Example 14

Example 15

Example 16 Important

Example 17

Example 18 Important

Example 19

Example 20 Important

Example 21

Example 22 Important

Example 23 Important

Example 24 Important

Example 25 You are here

Question 1 Deleted for CBSE Board 2024 Exams

Question 2 Important Deleted for CBSE Board 2024 Exams

Question 3 Important Deleted for CBSE Board 2024 Exams

Chapter 3 Class 12 Matrices

Serial order wise

Last updated at June 8, 2023 by Teachoo

Example 25 Let A = [■8(2&−1@3&4)], B=[■8(5&2@7&4)], C = [■8(2&5@3&8)] find a matrix D such that CD – AB = O Order of A = 2 × 2 & Order of B = 2 × 2 Order of AB = 2 × 2 Since we are doing CD – AB Order of CD = Order of AB Order of CD = 2 × 2 Order of C = 2 × 2 So, order of D = × Let D = [■8(𝐚&𝒃@𝒄&𝒅)] Now, given CD – AB = O [■8(2&5@3&8)] [■8(a&b@c&d)] − [■8(2&−1@3&4)][■8(5&2@7&4)] = O [■8(2(a)+5(c)&2(b)+5(d)@3(a)+8(c)&3(b)+8(d))] – [■8(2(5)+(−1)7&2(2)+(−1)(4)@3(5)+4(7)&3(2)+4(4))] = O [■8(2a+5c&2b+5d@3a+8c&3b+8d)] – [■8(10−7&4−4@15+28&6+16)] = O [■8(2a+5c&2b+5d@3a+8c&3b+8d)] – [■8(3&0@43&22)] = O [■8(2a+5c−3&2b+5d−0@3a+8c−43&3b+8d−22)]=[■8(0&0@0&0)] Since matrices are equal, Corresponding elements are equal Hence, 2a + 5c – 3 = 0 3a + 8c – 43 = 0 2b + 5d = 0 3b + 8d – 22 = 0 Solving (1) 2a + 5c – 3 = 0 2a + 5c = 3 2a = 3 – 5c a = (𝟑 − 𝟓𝒄)/𝟐 Putting value of a in (2) 3a + 8c – 43 = 0 3((𝟑−𝟓𝒄)/𝟐) + 8c – 43 = 0 (3(3 − 5𝑐) + 2(8𝑐) − 2(43))/2 = 0 9 – 15c + 16c – 86 = 0 − 15c + 16c – 86 + 9 = 0 c – 77 = 0 c = 77 From (1) 2a + 5c – 3 = 0 Putting value of c = 77 2a + 5 × 77 – 3 = 0 2a + 385 – 3 = 0 2a + 382 = 0 2a = –382 a = (−382)/2 a = −191 From (3) 2b + 5d = 0 2b = − 5d b = ((− 𝟓)/𝟐)d From (4) 3b + 8d – 22 = 0 Putting value of b = ((− 5)/2)d 3((− 𝟓)/𝟐)d + 8d − 22 = 0 (−15𝑑)/2 + 8d – 22 = 0 (−15𝑑 + 16𝑑 − 44)/2 = 0 d – 44 = 0 × 2 d – 44 = 0 d = 44 From (3) 2b + 5d = 0 Putting value of d = 44 2b + 5 × 44 = 0 2b + 220 = 0 2b = –220 b = (−220)/2 b = −110 Hence, a = −191, b = −110 , c = 77 , d = 44 Thus, Matrix D is = [■8(𝑎&𝑏@𝑐&𝑑)] = [■8(−𝟏𝟗𝟏&−𝟏𝟏𝟎@𝟕𝟕&𝟒𝟒)]