Slide73.JPG

Slide74.JPG
Slide75.JPG
Slide76.JPG
Slide77.JPG Slide78.JPG Slide79.JPG


Transcript

Example 25 Let A = [■8(2&−1@3&4)], B=[■8(5&2@7&4)], C = [■8(2&5@3&8)] find a matrix D such that CD – AB = O Order of A = 2 × 2 & Order of B = 2 × 2 Order of AB = 2 × 2 Since we are doing CD – AB Order of CD = Order of AB Order of CD = 2 × 2 Order of C = 2 × 2 So, order of D = × Let D = [■8(𝐚&𝒃@𝒄&𝒅)] Now, given CD – AB = O [■8(2&5@3&8)] [■8(a&b@c&d)] − [■8(2&−1@3&4)][■8(5&2@7&4)] = O [■8(2(a)+5(c)&2(b)+5(d)@3(a)+8(c)&3(b)+8(d))] – [■8(2(5)+(−1)7&2(2)+(−1)(4)@3(5)+4(7)&3(2)+4(4))] = O [■8(2a+5c&2b+5d@3a+8c&3b+8d)] – [■8(10−7&4−4@15+28&6+16)] = O [■8(2a+5c&2b+5d@3a+8c&3b+8d)] – [■8(3&0@43&22)] = O [■8(2a+5c−3&2b+5d−0@3a+8c−43&3b+8d−22)]=[■8(0&0@0&0)] Since matrices are equal, Corresponding elements are equal Hence, 2a + 5c – 3 = 0 3a + 8c – 43 = 0 2b + 5d = 0 3b + 8d – 22 = 0 Solving (1) 2a + 5c – 3 = 0 2a + 5c = 3 2a = 3 – 5c a = (𝟑 − 𝟓𝒄)/𝟐 Putting value of a in (2) 3a + 8c – 43 = 0 3((𝟑−𝟓𝒄)/𝟐) + 8c – 43 = 0 (3(3 − 5𝑐) + 2(8𝑐) − 2(43))/2 = 0 9 – 15c + 16c – 86 = 0 − 15c + 16c – 86 + 9 = 0 c – 77 = 0 c = 77 From (1) 2a + 5c – 3 = 0 Putting value of c = 77 2a + 5 × 77 – 3 = 0 2a + 385 – 3 = 0 2a + 382 = 0 2a = –382 a = (−382)/2 a = −191 From (3) 2b + 5d = 0 2b = − 5d b = ((− 𝟓)/𝟐)d From (4) 3b + 8d – 22 = 0 Putting value of b = ((− 5)/2)d 3((− 𝟓)/𝟐)d + 8d − 22 = 0 (−15𝑑)/2 + 8d – 22 = 0 (−15𝑑 + 16𝑑 − 44)/2 = 0 d – 44 = 0 × 2 d – 44 = 0 d = 44 From (3) 2b + 5d = 0 Putting value of d = 44 2b + 5 × 44 = 0 2b + 220 = 0 2b = –220 b = (−220)/2 b = −110 Hence, a = −191, b = −110 , c = 77 , d = 44 Thus, Matrix D is = [■8(𝑎&𝑏@𝑐&𝑑)] = [■8(−𝟏𝟗𝟏&−𝟏𝟏𝟎@𝟕𝟕&𝟒𝟒)]

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.