




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 2
Example 3 Important
Example 4
Example 5 Important
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important You are here
Example 21
Example 22 Important
Example 23 Important
Example 24 Important
Example 25
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Important Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Example 20 If A = [■8(3&√3&[email protected]&2&0)] and B = [■8(2&−1&[email protected]&2&4)] Verify that (i) (A’)’ = A, A = [■8(3&√3&[email protected]&2&0)] A’ = [■8(3&√3&[email protected]&2&0)]^′= [■8(3&4@√3&[email protected]&0)] (A’)’ = [■8(3&4@√3&[email protected]&0)]^′= [■8(3&√3&[email protected]&2&0)] = A Thus (A’)’ = A Example 20 If A = [■8(3&√3&[email protected]&2&0)] and B = [■8(2&−1&[email protected]&2&4)] Verify that (i) (A’)’ = A, A = [■8(3&√3&[email protected]&2&0)] A’ = [■8(3&√3&[email protected]&2&0)]^′= [■8(3&4@√3&[email protected]&0)] (A’)’ = [■8(3&4@√3&[email protected]&0)]^′= [■8(3&√3&[email protected]&2&0)] = A Thus (A’)’ = A Example 20 If A = [■8(3&√3&[email protected]&2&0)] and B = [■8(2&−1&[email protected]&2&4)] Verify that (ii) (A + B)’ = A’ + B’, Solving L.H.S First finding (A + B) (A + B) = [■8(3&√3&[email protected]&2&0)] + [■8(2&−1&[email protected]&2&4)] = [■8(3+2 &√3+(−1)&[email protected]+1&2+2&0+4)] = [■8(5&√3−1&[email protected]&4&4)] Thus, (A + B)’ = [■8(5&5@√3−1&[email protected]&4)] Solving R.H.S A’ + B’ Finding A’ A = [■8(3&√3&[email protected]&2&0)] A’ = [■8(3&4@√3&[email protected]&0)] Also, B = [■8(2&−1&[email protected]&2&4)] B‘ = [■8(2&1@−1&[email protected]&4)] Now, A’ + B’ =[■8(3&4@√3&[email protected]&0)] +[■8(2&1@−1&[email protected]&4)] = [■8(3+2&4+1@√3+(−1)&[email protected]+0&0+4)] = [■8(5&5@√3−1&[email protected]&4)] = L.H.S Hence, L.H.S = R.H.S Hence Proved Example 20 If A = [■8(3&√3&[email protected]&2&0)] and B = [■8(2&−1&[email protected]&2&4)] .Verify that (iii) (kB)’ = kB’, where k is any constant. Solving L.H.S (kB)’ Finding kB first kB = k [■8(2&−1&[email protected]&2&4)] = [■8(2𝑘&−𝑘&2𝑘@𝑘&2𝑘&4𝑘)] (kB)’ = [■8(2𝑘&𝑘@−𝑘&2𝑘@2𝑘&4𝑘)] Solving R.H.S kB’ Finding B’ first B = [■8(2&−1&[email protected]&2&4)] B’ = [■8(2&1@−1&[email protected]&4)] kB’ = k[■8(2&1@−1&[email protected]&4)] = [■8(2𝑘&𝑘@−𝑘&2𝑘@2𝑘&4𝑘)] = L.H.S Hence, L.H.S = R.H.S Hence Proved.