Learn All Concepts of Chapter 3 Class 12 Matrices - FREE. Check - Matrices Class 12 - Full video

Last updated at Jan. 17, 2020 by Teachoo

Transcript

Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (i) (A’)’ = A, A = [■8(3&√3&2@4&2&0)] A’ = [■8(3&√3&2@4&2&0)]^′= [■8(3&4@√3&2@2&0)] (A’)’ = [■8(3&4@√3&2@2&0)]^′= [■8(3&√3&2@4&2&0)] = A Thus (A’)’ = A Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (i) (A’)’ = A, A = [■8(3&√3&2@4&2&0)] A’ = [■8(3&√3&2@4&2&0)]^′= [■8(3&4@√3&2@2&0)] (A’)’ = [■8(3&4@√3&2@2&0)]^′= [■8(3&√3&2@4&2&0)] = A Thus (A’)’ = A Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (ii) (A + B)’ = A’ + B’, Solving L.H.S First finding (A + B) (A + B) = [■8(3&√3&2@4&2&0)] + [■8(2&−1&2@1&2&4)] = [■8(3+2 &√3+(−1)&2+2@4+1&2+2&0+4)] = [■8(5&√3−1&4@5&4&4)] Thus, (A + B)’ = [■8(5&5@√3−1&4@4&4)] Solving R.H.S A’ + B’ Finding A’ A = [■8(3&√3&2@4&2&0)] A’ = [■8(3&4@√3&2@2&0)] Also, B = [■8(2&−1&2@1&2&4)] B‘ = [■8(2&1@−1&2@2&4)] Now, A’ + B’ =[■8(3&4@√3&2@2&0)] +[■8(2&1@−1&2@2&4)] = [■8(3+2&4+1@√3+(−1)&2+2@2+0&0+4)] = [■8(5&5@√3−1&4@4&4)] = L.H.S Hence, L.H.S = R.H.S Hence Proved Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] .Verify that (iii) (kB)’ = kB’, where k is any constant. Solving L.H.S (kB)’ Finding kB first kB = k [■8(2&−1&2@1&2&4)] = [■8(2𝑘&−𝑘&2𝑘@𝑘&2𝑘&4𝑘)] (kB)’ = [■8(2𝑘&𝑘@−𝑘&2𝑘@2𝑘&4𝑘)] Solving R.H.S kB’ Finding B’ first B = [■8(2&−1&2@1&2&4)] B’ = [■8(2&1@−1&2@2&4)] kB’ = k[■8(2&1@−1&2@2&4)] = [■8(2𝑘&𝑘@−𝑘&2𝑘@2𝑘&4𝑘)] = L.H.S Hence, L.H.S = R.H.S Hence Proved.

Examples

Example 1

Example 2

Example 3

Example 4

Example 5 Important

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12

Example 13

Example 14

Example 15

Example 16

Example 17

Example 18 Important

Example 19

Example 20 Important You are here

Example 21

Example 22 Important

Example 23 Not in Syllabus - CBSE Exams 2021

Example 24 Important Not in Syllabus - CBSE Exams 2021

Example 25 Important Not in Syllabus - CBSE Exams 2021

Example 26 Important

Example 27 Important

Example 28

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.