# Example 25 - Chapter 3 Class 12 Matrices

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Example 25 Find P -1, if it exists, given P = [■8(10&−2@−5&1)] Given P = [■8(10&−2@−5&1)] We know that P = I P [■8(10&−2@−5&1)] = [■8(1&0@0&1)] P R1 →1/10 R1 [■8(𝟏𝟎/𝟏𝟎&(−2)/10@−5&1)]" = " [■8(1/10&0/10@0&1)]" P" [■8(𝟏&(−1)/5@−5&1)] = [■8(1/10&0@0&1)] P R2 →"R2" + 5R1 [■8(1&(−1)/5@−𝟓+𝟓(𝟏)&1+5((−1)/5) )]" = " [■8(1/10&0@0+5(1/10)&1+5(0))]" P" [■8(1&(−1)/5@−𝟓+𝟓&1−1)]" = " [■8(1/10&0@0+(1/2)&1+0)]" P" [■8(1&(−1)/5@𝟎&0)] = [■8(1/10&0@1/2&1)] P Since we have all zeros in the second row of the left hand side matrix of the above equation. Therefore, P–1 does not exist.

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12

Example 13

Example 14

Example 15

Example 16

Example 17

Example 18 Important

Example 19 Important

Example 20

Example 21

Example 22 Important

Example 23

Example 24

Example 25 You are here

Example 26

Example 27 Important

Example 28 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.