# Example 18 - Chapter 3 Class 12 Matrices

Last updated at April 16, 2024 by Teachoo

Examples

Example 1

Example 2

Example 3 Important

Example 4

Example 5 Important

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11 Important

Example 12

Example 13 Important

Example 14

Example 15

Example 16 Important

Example 17

Example 18 Important You are here

Example 19

Example 20 Important

Example 21

Example 22 Important

Example 23 Important

Example 24 Important

Example 25

Question 1 Deleted for CBSE Board 2025 Exams

Question 2 Important Deleted for CBSE Board 2025 Exams

Question 3 Important Deleted for CBSE Board 2025 Exams

Chapter 3 Class 12 Matrices

Serial order wise

Last updated at April 16, 2024 by Teachoo

Example 18 If A = [■8(1&2&3@3&−2&1@4&2&1)] then show that A3 – 23A – 40I = O Finding A2 A2 = AA = [■8(1&2&3@3&−2&1@4&2&1)] [■8(1&2&3@3&−2&1@4&2&1)] = [■8(1(1)+2(3)+3(4)&1(2)+2(−2)+3(2)&1(3)+2(1)+3(1)@3(1)+(−2)(3)+1(4)&3(2)+(−2)(−2)+1(2)&3(3)+(−2)(1)+1(1)@4(1)+2(3)+1(4)&4(2)+2(−2)+1(2)&4(3)+(2)(1)+1(1))] = [■8(1+6+12&2−4+6&3+2+3@3−6+4&6+4+2&9−2+1@4+6+4&8−4+2&12+2+1)] = [■8(𝟏𝟗&𝟒&𝟖@𝟏&𝟏𝟐&𝟖@𝟏𝟒&𝟔&𝟏𝟓)] Finding A3 A3 = A2 A = [■8(19&4&8@1&12&8@14&6&15)] [■8(1&2&3@3&−2&1@4&2&1)] = [■8(19(1)+4(3)+8(4)&19(2)+4(−2)+8(2)&19(3)+4(1)+8(1)@1(1)+12(3)+8(4)&1(2)+12(−2)+8(2)&1(3)+12(1)+8(1)@14(1)+6(3)+15(4)&14(2)+6(−2)+15(2)&14(3)+6(1)+15 (1))] = [■8(19+12+32&38−8+16&57+4+8@1+36+32&2−24+16&3+12+8@14+18+60&28−12+30&42+6+15)] = [■8(𝟔𝟑&𝟒𝟔&𝟔𝟗@𝟔𝟗&−𝟔&𝟐𝟑@𝟗𝟐&𝟒𝟔&𝟔𝟑)] Calculating A3 – 23A – 40I = [■8(63&46&69@69&−6&23@92&46&63)] −23 [■8(1&2&3@3&−2&1@4&2&1)] −40 [■8(1&0&0@0&1&0@0&0&1)] = [■8(63&46&69@69&−6&23@92&46&63)] −[■8(23×1&23×2&23×3@23×3&23×(−2)&23×1@23×4&23×(2)&23×1)] − [■8(1×40&0×40&0×40@0×40&1×40&0×40@0×40&0×40&1×40)] = [■8(63&46&69@69&−6&23@92&46&63)] ⤶7− [■8(23&46&69@69&−46&23@92&46&23)] ⤶7− [■8(40&0&0@0&40&0@0&0&40)] = [■8(63−23−40&46−46+0&69−69+0@69−69+0&−6+46−40&23−23+0@92−92+0&46−46+0&63−23−40)] = [■8(𝟎&𝟎&𝟎@𝟎&𝟎&𝟎@𝟎&𝟎&𝟎)] = O Hence proved.