Learn All Concepts of Chapter 3 Class 12 Matrices - FREE. Check - Matrices Class 12 - Full video

Last updated at May 29, 2018 by Teachoo
Transcript
Example 8 If A = [ 8(8&0@4& 2@3&6)] and B = [ 8(2& 2@4&2@ 5&1)] then find the matrix X, such that 2A + 3X = 5B. Given that 2A + 3X = 5B Putting values 2 [ 8(8& 0@4& 2@3& 6)] + 3X = 5 [ 8( 2& 2@ 4& 2@ 5& 1)] [ 8(8 2 & 0 2@4 2& 2 2@3 2& 6 2)] + 3X = [ 8( 2 5 & 2 5@ 4 5& 2 5@ 5 5& 1 5)] [ 8(16& 0@8& 4@6& 12)] + 3X = [ 8( 10& 10@ 20& 10@ 25& 5)] 3X = [ 8(10& 10@20&10@ 25&5)] [ 8(16& 0@8& 4@6&12)] 3X = [ 8( 10 16& 10 0@ 20 8&10 ( 4)@ 25 6& 5 12)] 3X = [ 8( 6& 10@ 12& 14@ 31& 7)] X = 1/3 [ 8( 6& 10@ 12& 14@ 31& 7)] = [ 8(( 6)/3&( 10)/3@( 12)/3&14/3@( 31)/3&( 7)/3)] = [ 8( 2&( 10)/3@4&14/3@( 31)/3&( 7)/3)] Hence, X = [ 8( 2&( 10)/3@4&14/3@( 31)/3&( 7)/3)]
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7
Example 8 You are here
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21
Example 22 Important
Example 23 Not in Syllabus - CBSE Exams 2021
Example 24 Important Not in Syllabus - CBSE Exams 2021
Example 25 Important Not in Syllabus - CBSE Exams 2021
Example 26 Important
Example 27 Important
Example 28
About the Author