Example 23 - If A = [cos sin -sin cos], prove An - Class 12 - Examples

part 2 - Example 23 - Examples - Serial order wise - Chapter 3 Class 12 Matrices
part 3 - Example 23 - Examples - Serial order wise - Chapter 3 Class 12 Matrices
part 4 - Example 23 - Examples - Serial order wise - Chapter 3 Class 12 Matrices

Share on WhatsApp

Transcript

Example 23 If A = [■8( cos" θ" &sin" θ" @−sin "θ" &cos" θ" )] , then prove that An = [■8(cos n"θ" &sin n"θ" @−sin "nθ" &cos n"θ" )],n ∈ N. We shall prove the result by using mathematical induction. Step 1: Let P(n) : If A = [■8(cos "θ" &sin" θ" @−sin "θ" &cos" θ" )] then An = [■8(cos n"θ" &sin n"θ" @−sin" nθ" &cos n"θ" )] ,n ∈ N. Step 2: Prove for n = 1 For n = 1 L.H.S = A1 = A = [■8(cos" θ" &sin" θ" @−sin" θ" &cos" θ" )], R.H.S = [■8(cos" 1θ" &sin "1θ" @−sin 1"θ" &cos "1θ" )] =[■8(cos" θ" &sin" θ" @−sin" θ" &cos" θ" )] L.H.S = R.H.S ∴ P(n) is true for n = 1 Step 3: Assume P(k) to be true and then prove P(k + 1) is true Assume that P (k) is true P(k) : If A = [■8(cos "θ" &sin "θ" @−sin "θ" &cos "θ" )], then Ak = [■8(cos "kθ" &sin k"θ" @−sin k"θ" &cos k"θ" )] , where k ∈ N We will have to prove that P( k +1) is true P(k + 1) : If A = [■8(cos" θ" &sin" θ" @−sin" θ" &cos" θ" )] , then we need to prove Ak+1 = [■8(cos" (k + 1)θ" &sin" (k + 1)θ" @−sin" (k + 1)θ" &cos" (k + 1)θ" )] Solving L.H.S Ak+1 = Ak . A = [■8(cos "kθ" &sin k"θ" @−sin k"θ" &cos k"θ" )] [■8(cos "θ" &sin "θ" @−sin "θ" &cos" θ" )] =[■8(cos" kθ" (cos" θ" )+sin k"θ" (−sin" θ)" &cos kθ(sin "θ)" +sin kθ(cos" θ" )@−sin" kθ" (cos "θ" )+cos k"θ" (−sin "θ)" &−sin "kθ(" sin "θ" )+ cos k"θ" (cos "θ" ))] = [■8(cos" kθ" cos" θ" −sin k"θ" sin" θ" &cos kθ sin "θ" +sin kθ cos" θ" @−sin" kθ" cos "θ" −cos k"θ" sin "θ" &−sin "kθ" sin "θ" + cos k"θ" cos "θ" )] = [■8(cos" kθ" cos" θ" −sin k"θ" sin" θ" &sin "θ" cos kθ +sin kθ cos" θ" @−(sin" kθ" cos "θ" +cos k"θ" sin "θ)" &cos k"θ" cos "θ" − sin "kθ" sin "θ" )] = [■8(cos⁡"(" k"θ + θ)" &sin "(" k"θ + θ)" @−sin" (" k"θ + θ)" &"cos (" k"θ + θ)" )] = [■8(cos⁡"(" k" + 1)θ" &sin" (" k" + 1)θ" @−sin "(" k" + 1)θ" &"cos (" k" + 1)θ" )] = R.H.S Thus P (k + 1) is true ∴ By the principal of mathematical induction , P(n) is true for n ∈ N Thus, if A = [■8(cos "θ" &sin" θ" @−sin "θ" &cos" θ" )] then An = [■8(cos n"θ" &sin n"θ" @−sin" nθ" &cos n"θ" )] for all n ∈ N.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo