




Last updated at Dec. 8, 2016 by Teachoo
Transcript
Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (i) (A’)’ = A, A = [■8(3&√3&2@4&2&0)] A’ = [■8(3&√3&2@4&2&0)]^′= [■8(3&4@√3&2@2&0)] (A’)’ = [■8(3&4@√3&2@2&0)]^′= [■8(3&√3&2@4&2&0)] = A Thus (A’)’ = A Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (ii) (A + B)’ = A’ + B’, Taking L.H.S First finding (A + B) (A + B) = [■8(3&√3&2@4&2&0)] + [■8(2&−1&2@1&2&4)] = [■8(3+2 &√3+(−1)&2+2@4+1&2+2&0+4)] = [■8(5&√3−1&4@5&4&4)] Thus, (A + B)’ = [■8(5&5@√3−1&4@4&4)] Taking R.H.S A’ + B’ Finding A’ A = [■8(3&√3&2@4&2&0)] A’ = [■8(3&4@√3&2@2&0)] Also, B = [■8(2&−1&2@1&2&4)] B‘ = [■8(2&1@−1&2@2&4)]Now, A’ + B’ =[■8(3&4@√3&2@2&0)] +[■8(2&1@−1&2@2&4)] = [■8(3+2&4+1@√3+(−1)&2+2@2+0&0+4)] = [■8(5&5@√3−1&4@4&4)] = L.H.S Hence, L.H.S = R.H.S Hence Proved Example 20, If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] .Verify that (iii) (kB)’ = kB’, where k is any constant. Taking L.H.S (kB)’ Finding kB first kB = k [■8(2&−1&2@1&2&4)] = [■8(2k&−k&2k@k&2k&4k)] (kB)’ = [■8(2k&k@−𝑘&2𝑘@2k&4k)] Taking R.H.S kB’ Finding B’ first B = [■8(2&−1&2@1&2&4)] B’ = [■8(2&1@−1&2@2&4)] kB’ = k[■8(2&1@−1&2@2&4)] = [■8(2k&k@−k&2k@2k&4k)] = L.H.S Hence, L.H.S = R.H.S Hence Proved.
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17
Example 18 Important
Example 19 Important
Example 20 You are here
Example 21
Example 22 Important
Example 23
Example 24
Example 25
Example 26
Example 27 Important
Example 28 Important
About the Author