Example 20 - Verify (i) (A')' = A (ii) (A + B)' = A' + B' - Examples

part 2 - Example 20 - Examples - Serial order wise - Chapter 3 Class 12 Matrices
part 3 - Example 20 - Examples - Serial order wise - Chapter 3 Class 12 Matrices
part 4 - Example 20 - Examples - Serial order wise - Chapter 3 Class 12 Matrices
part 5 - Example 20 - Examples - Serial order wise - Chapter 3 Class 12 Matrices part 6 - Example 20 - Examples - Serial order wise - Chapter 3 Class 12 Matrices

Share on WhatsApp

Transcript

Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (i) (A’)’ = A, A = [■8(3&√3&2@4&2&0)] A’ = [■8(3&√3&2@4&2&0)]^′= [■8(𝟑&𝟒@√𝟑&𝟐@𝟐&𝟎)] (A’)’ = [■8(3&4@√3&2@2&0)]^′= [■8(3&√3&2@4&2&0)] = A Thus (A’)’ = A Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (ii) (A + B)’ = A’ + B’, Solving L.H.S First finding (A + B) (A + B) = [■8(3&√3&2@4&2&0)] + [■8(2&−1&2@1&2&4)] = [■8(3+2 &√3+(−1)&2+2@4+1&2+2&0+4)] = [■8(5&√3−1&4@5&4&4)] Thus, (A + B)’ = [■8(𝟓&𝟓@√𝟑−𝟏&𝟒@𝟒&𝟒)] Solving R.H.S A’ + B’ Finding A’ A = [■8(3&√3&2@4&2&0)] A’ = [■8(𝟑&𝟒@√𝟑&𝟐@𝟐&𝟎)] Also, B = [■8(2&−1&2@1&2&4)] B‘ = [■8(𝟐&𝟏@−𝟏&𝟐@𝟐&𝟒)] Now, A’ + B’ =[■8(3&4@√3&2@2&0)] +[■8(2&1@−1&2@2&4)] = [■8(3+2&4+1@√3+(−1)&2+2@2+0&0+4)] = [■8(𝟓&𝟓@√𝟑−𝟏&𝟒@𝟒&𝟒)] = L.H.S Since L.H.S = R.H.S Hence Proved Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] .Verify that (iii) (kB)’ = kB’, where k is any constant. Solving L.H.S (kB)’ Finding kB first kB = k [■8(2&−1&2@1&2&4)] = [■8(2𝑘&−𝑘&2𝑘@𝑘&2𝑘&4𝑘)] (kB)’ = [■8(𝟐𝒌&𝒌@−𝒌&𝟐𝒌@𝟐𝒌&𝟒𝒌)] Solving R.H.S kB’ Finding B’ first B = [■8(2&−1&2@1&2&4)] B’ = [■8(𝟐&𝟏@−𝟏&𝟐@𝟐&𝟒)] kB’ = k[■8(2&1@−1&2@2&4)] = [■8(2𝑘&𝑘@−𝑘&2𝑘@2𝑘&4𝑘)] = L.H.S Since L.H.S = R.H.S Hence Proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo