Are ads bothering you?

Ex 3.3

Ex 3.3, 1

Ex 3.3, 2

Ex 3.3, 3

Ex 3.3, 4 Important

Ex 3.3, 5 (i)

Ex 3.3, 5 (ii)

Ex 3.3, 6 (i)

Ex 3.3, 6 (ii) Important

Ex 3.3, 7 (i)

Ex 3.3, 7 (ii) Important

Ex 3.3, 8

Ex 3.3, 9

Ex 3.3, 10 (i) Important

Ex 3.3, 10 (ii)

Ex 3.3, 10 (iii) Important

Ex 3.3, 10 (iv)

Ex 3.3, 11 (MCQ) Important You are here

Ex 3.3, 12 (MCQ)

Chapter 3 Class 12 Matrices (Term 1)

Serial order wise

Last updated at Aug. 9, 2021 by Teachoo

Ex 3.3, 11 If A, B are symmetric matrices of same order, then AB − BA is a A. Skew symmetric matrix B. Symmetric matrix C. Zero matrix D. Identity matrix A and B are symmetric matrices, ∴ A’ = A and B’ = B Consider (AB – BA)’ = (AB)’ – (BA)’ = B’A’ – A’B’ = BA − AB = − (AB – BA) ∴ (AB – BA)’ = − (AB – BA) Thus, (AB − BA) is a skew-symmetric matrix. ∴ Correct answer is A. [(A – B)’ = A’ – B’] [(AB)’ = B’A’] [By (1)]