Slide27.JPG

Slide28.JPG

Go Ad-free

Transcript

Ex 3.3, 6 (ii) If A = [■8(sin⁡𝛼&cos⁡𝛼@−cos⁡𝛼&sin⁡𝛼 )] , then verify that A’ A = I Solving L.H.S A’ A Given A = [■8(sin⁡𝛼&cos⁡𝛼@−cos⁡𝛼&sin⁡𝛼 )] So, A’ = [■8(sin⁡𝛼&〖−cos〗⁡𝛼@cos⁡𝛼&sin⁡𝛼 )] A’ A = [■8(sin⁡𝛼&〖−cos〗⁡𝛼@cos⁡𝛼&sin⁡𝛼 )] [■8(sin⁡𝛼&cos⁡𝛼@〖−cos〗⁡𝛼&sin⁡𝛼 )] = [■8(sin⁡𝛼 〖.sin〗⁡𝛼+〖(−cos〗⁡〖𝛼)〖(−cos〗⁡〖𝛼)〗 〗&sin⁡𝛼 〖.cos〗⁡𝛼+〖(−cos〗⁡〖𝛼)〖(sin〗⁡〖𝛼)〗 〗@cos⁡𝛼 〖.sin〗⁡𝛼+sin⁡〖𝛼 〖(−cos〗⁡〖𝛼)〗 〗&cos⁡𝛼 〖.cos〗⁡𝛼+sin⁡〖𝛼 〖.sin〗⁡𝛼 〗 )] = [■8(sin2⁡𝛼+cos2𝛼&sin⁡〖𝛼 cos⁡〖𝛼−cos⁡〖𝛼 sin⁡𝛼 〗 〗 〗@cos⁡𝛼 sin⁡〖𝛼−sin⁡𝛼 〗 cos𝛼&cos2⁡𝛼+sin2𝛼)] = [■8(𝐬𝐢𝐧𝟐⁡𝜶+𝐜𝐨𝐬𝟐𝜶&𝟎@𝟎&𝐜𝐨𝐬𝟐⁡𝜶+𝐬𝐢𝐧𝟐𝜶)] Using sin2 θ + cos2 θ = 1 = [■8(1&0@0&1)] = I = R.H.S Hence L.H.S = R.H.S Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo