# Ex 3.3, 6 (ii) - Chapter 3 Class 12 Matrices (Term 1)

Last updated at Aug. 16, 2021 by Teachoo

Last updated at Aug. 16, 2021 by Teachoo

Transcript

Ex 3.3, 6 (ii) If A = [ 8(sin &cos @ cos &sin )] , then verify that A A = I Taking L.H.S A A Given A = [ 8(sin &cos @ cos &sin )] So, A = [ 8(sin & cos @cos &sin )] A A = [ 8(sin & cos @cos &sin )] [ 8(sin &cos @ cos &sin )] = [ 8(sin .sin + ( cos ) ( cos ) &sin .cos + ( cos ) (sin ) @cos .sin +sin ( cos ) &cos .cos +sin .sin )] = [ 8(sin2 +cos2 &sin cos cos sin @cos sin sin cos &cos2 +sin2 )] = [ 8(sin2 +cos2 &0@0&cos2 +sin2 )] Using sin2 + cos2 = 1 = [ 8(1&0@0&1)] = I = R.H.S Hence L.H.S = R.H.S Hence Proved

Ex 3.3

Ex 3.3, 1

Ex 3.3, 2

Ex 3.3, 3

Ex 3.3, 4 Important

Ex 3.3, 5 (i)

Ex 3.3, 5 (ii)

Ex 3.3, 6 (i)

Ex 3.3, 6 (ii) Important You are here

Ex 3.3, 7 (i)

Ex 3.3, 7 (ii) Important

Ex 3.3, 8

Ex 3.3, 9

Ex 3.3, 10 (i) Important

Ex 3.3, 10 (ii)

Ex 3.3, 10 (iii) Important

Ex 3.3, 10 (iv)

Ex 3.3, 11 (MCQ) Important

Ex 3.3, 12 (MCQ)

Chapter 3 Class 12 Matrices (Term 1)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.