Ex 3.3, 6 (ii) - Chapter 3 Class 12 Matrices
Last updated at April 16, 2024 by Teachoo
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii)
Ex 3.3, 6 (i)
Ex 3.3, 6 (ii) Important You are here
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv)
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 6 (ii) If A = [■8(sin𝛼&cos𝛼@−cos𝛼&sin𝛼 )] , then verify that A’ A = I Solving L.H.S A’ A Given A = [■8(sin𝛼&cos𝛼@−cos𝛼&sin𝛼 )] So, A’ = [■8(sin𝛼&〖−cos〗𝛼@cos𝛼&sin𝛼 )] A’ A = [■8(sin𝛼&〖−cos〗𝛼@cos𝛼&sin𝛼 )] [■8(sin𝛼&cos𝛼@〖−cos〗𝛼&sin𝛼 )] = [■8(sin𝛼 〖.sin〗𝛼+〖(−cos〗〖𝛼)〖(−cos〗〖𝛼)〗 〗&sin𝛼 〖.cos〗𝛼+〖(−cos〗〖𝛼)〖(sin〗〖𝛼)〗 〗@cos𝛼 〖.sin〗𝛼+sin〖𝛼 〖(−cos〗〖𝛼)〗 〗&cos𝛼 〖.cos〗𝛼+sin〖𝛼 〖.sin〗𝛼 〗 )] = [■8(sin2𝛼+cos2𝛼&sin〖𝛼 cos〖𝛼−cos〖𝛼 sin𝛼 〗 〗 〗@cos𝛼 sin〖𝛼−sin𝛼 〗 cos𝛼&cos2𝛼+sin2𝛼)] = [■8(𝐬𝐢𝐧𝟐𝜶+𝐜𝐨𝐬𝟐𝜶&𝟎@𝟎&𝐜𝐨𝐬𝟐𝜶+𝐬𝐢𝐧𝟐𝜶)] Using sin2 θ + cos2 θ = 1 = [■8(1&0@0&1)] = I = R.H.S Hence L.H.S = R.H.S Hence Proved