




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.3
Ex 3.3, 2 You are here
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii)
Ex 3.3, 6 (i)
Ex 3.3, 6 (ii) Important
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv)
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ)
Last updated at June 8, 2023 by Teachoo
Ex 3.3, 2 If A = [■8(−1&2&3@5&7&9@−2&1&1)] and B= [■8(−4&1&−5@1&2&0@1&3&1)] , then verify that (i) (A + B)’ = A’ + B’ Solving L.H.S (A + B)’ First we will calculate A + B A + B = [■8(−1&2&3@5&7&9@−2&1&1)] + [■8(−4&1&−5@1&2&0@1&3&1)] = [■8(−1+(−4)&2+1&3+(−5)@5+1&7+2&9+0@−2+1&1+3&1+1)] = [■8(−5&3&−2@6&9&9@−1&4&2)] Thus, A + B = [■8(−5&3&−2@6&9&9@−1&4&2)] (A + B)’ = [■8(−𝟓&𝟔&−𝟏@𝟑&𝟗&𝟒@−𝟐&𝟗&𝟐)] Solving R.H.S A’ + B’ First we will calculate A’ and B’ A = [■8(−1&2&3@5&7&9@−2&1&1)] A’ =[■8(−1&5&−2@2&7&1@3&9&1)] B = [■8(−4&1&−5@1&2&0@1&3&1)] B’ = [■8(−4&1&1@1&2&3@−5&0&1)] Now, A’ + B’ = [■8(−1&5&−2@2&7&1@3&9&1)]+[■8(−4&1&1@1&2&3@−5&0&1)] = [■8(−1+(−4)&5+1&−2+1@2+1&7+2&1+3@3+(−5)&9+0&1+1)] =[■8(−𝟓&𝟔&−𝟏@𝟑&𝟗&𝟒@−𝟐&𝟗&𝟐)] = L.H.S Hence Proved Ex 3.3, 2 If A = [■8(−1&2&3@5&7&9@−2&1&1)] and B= [■8(−4&1&−5@1&2&0@1&3&1)] , then verify that (ii) (A – B)’ = A’ – B’ Solving L.H.S (A – B)’ First we will calculate A – B A – B = [■8(−1&2&3@5&7&9@−2&1&1)] – [■8(−4&1&−5@1&2&0@1&3&1)] = [■8(−1−(−4)&2−1&3−(−5)@5−1&7−2&9−0@−2−1&1−3&1−1)] = [■8(−1+4&1&3+5@4&5&9@−3&−2&0)] = [■8(𝟑&𝟏&𝟖@𝟒&𝟓&𝟗@−𝟑&−𝟐&𝟎)] Thus, A – B = [■8(3&1&8@4&5&9@−3&−2&0)] Now, (A – B)’ = [■8(𝟑&𝟒&−𝟑@𝟏&𝟓&−𝟐@𝟖&𝟗&𝟎)] Solving R.H.S A’ – B’ First we will calculate A’ and B’ A = [■8(−1&2&3@5&7&9@−2&1&1)] A’ = [■8(−1&5&−2@2&7&1@3&9&1)] Now, A’ – B’ = [■8(−1&5&−2@2&7&1@3&9&1)]−[■8(−4&1&1@1&2&3@−5&0&1)] = [■8(−1−(−4)&5−1&−2−1@2−1&7−2&1−3@3−(−5)&9−0&1−1)] = [■8(−1+4&4&−3@1&5&−2@3+5&9&0)] = [■8(𝟑&𝟒&−𝟑@𝟏&𝟓&−𝟐@𝟖&𝟗&𝟎)] = L.H.S Hence L.H.S = R.H.S Hence Proved