

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii)
Ex 3.3, 6 (i)
Ex 3.3, 6 (ii) Important
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv) You are here
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ)
Last updated at Aug. 16, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 3.3, 10 Express the following matrices as the sum of a symmetric and a skew symmetric matrix: (iv) [■8(1&[email protected]−1&2)] Let A = [■8(1&[email protected]−1&2)] A’ = [■8(1&−[email protected]&2)] 1/2 (A + A’) = 1/2 ([■8(1&[email protected]−1&2)]" + " [■8(1&−[email protected]&2)]) = 1/2 [■8(2&[email protected]&4)] = [■8(1&[email protected]&2)] 1/2 (A – A’) = 1/2 ([■8(1&[email protected]−1&2)]−[■8(1&−[email protected]&2)]) = 1/2 [■8(0&[email protected]−6&0)] = [■8(0&[email protected]−3&0)] Let, P = 𝟏/𝟐 (A + A’) = [■8(1&[email protected]&2)] P’ = [■8(1&[email protected]&2)] = P Since P = P’ P is a symmetric matrix. Let, Q = 𝟏/𝟐 (A − A’) = [■8(0&[email protected]−3&0)] Q’ = [■8(0&−[email protected]&0)] = – [■8(0&[email protected]−3&0)] = −Q Since Q = − Q’ Q is a skew symmetric matrix. Now, P + Q = 1/2 (A + A’) + 1/2 (A − A’) = A Thus, A is a sum of symmetric & skew symmetric matrix