
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii)
Ex 3.3, 6 (i)
Ex 3.3, 6 (ii) Important
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv) You are here
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ)
Last updated at June 8, 2023 by Teachoo
Ex 3.3, 10 Express the following matrices as the sum of a symmetric and a skew symmetric matrix: (iv) [■8(1&5@−1&2)] Let A = [■8(1&5@−1&2)] A’ = [■8(1&−1@5&2)] 𝟏/𝟐 (A + A’) = 1/2 ([■8(1&5@−1&2)]" + " [■8(1&−1@5&2)]) = 1/2 [■8(2&4@4&4)] = [■8(𝟏&𝟐@𝟐&𝟐)] 𝟏/𝟐 (A – A’) = 1/2 ([■8(1&5@−1&2)]−[■8(1&−1@5&2)]) = 1/2 [■8(0&6@−6&0)] = [■8(𝟎&𝟑@−𝟑&𝟎)] Let, P = 𝟏/𝟐 (A + A’) = [■8(1&2@2&2)] P’ = [■8(1&2@2&2)] = P Since P = P’ P is a symmetric matrix. Let, Q = 𝟏/𝟐 (A − A’) = [■8(0&3@−3&0)] Q’ = [■8(0&−3@3&0)] = – [■8(0&3@−3&0)] = −Q Since Q = − Q’ Q is a skew symmetric matrix. Now, P + Q = 1/2 (A + A’) + 1/2 (A − A’) = A Thus, A is a sum of symmetric & skew symmetric matrix