

Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii) You are here
Ex 3.3, 6 (i)
Ex 3.3, 6 (ii) Important
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv)
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ)
Last updated at Aug. 16, 2021 by Teachoo
Ex 3.3, 5 For the matrices A and B, verify that (AB) = B A , where (ii) A = [ 8(0@1@2)] , B = [1 5 7] Taking L.H.S (AB) Finding AB AB = [ 8(0@1@2)]_(3 1) "[1 5 7]" _(1 3) = [ 8(0 1&0 5&0 7@1 1&1 5&1 7@2 1&2 5&2 7)]_(3 3) = [ 8(0&0&0@1&5&7@2&10&14)] Thus, AB = [ 8(0&0&0@1&5&7@2&10&14)] So, (AB) = [ 8(0&1&2@0&5&10@0&7&14)] Taking R.H.S (B A ) Finding B B = [1 5 7] B = [ 8(1@5@7)] Also, A = [ 8(0@1@2)] A = [0 1 2] B A = [ 8(1@5@7)]_(3 1) "[0 1 2] " _(1 3) = [ 8(1 0&1 1&1 2@5 0&5 1&5 2@7 0&7 1&7 2)]_(3 3) = [ 8(0&1&2@0&5&10@0&7&14)] = L.H.S Hence L.H.S = R.H.S Hence proved