
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii)
Ex 3.3, 6 (i) You are here
Ex 3.3, 6 (ii) Important
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv)
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ)
Last updated at Aug. 16, 2021 by Teachoo
Ex 3.3, 6 If (i) A = [ 8(cos &sin @ sin &cos )] , then verify that A A = I Taking L.H.S. A A Given A = [ 8(cos &sin @ sin &cos )] So, A = [ 8(cos & sin @sin &cos )] A A = [ 8(cos & sin @sin &cos )] [ 8(cos &sin @ sin &cos )] = [ 8(cos .cos + ( sin ) ( sin ) &cos .sin + ( sin )cos @sin . cos +cos ( sin ) &sin .sin +cos .cos )] = [ 8(cos2 +sin2 &sin cos sin cos @sin cos sin cos &sin2 +cos2 a)] = [ 8(cos2 +sin2 &0@0&sin2 +cos2 a)] Using sin2 + cos2 = 1 = [ 8(1&0@0&1)] = I = R.H.S Hence L.H.S = R.H.S Hence Proved