Slide53.JPG Slide54.JPG Slide55.JPG Slide56.JPG Slide57.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 10.3, 19 Find the equation for the ellipse that satisfies the given conditions: Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6). Since major axis is along y-axis & centre is at (0,0) So required equation of ellipse is 𝒙^𝟐/𝒃^𝟐 + 𝒚^𝟐/𝒂^𝟐 = 1 Given that ellipse passes through point (3, 2) & (1, 6) Points (3, 2) & (1, 6) will satisfy equation of ellipse. Putting x = 3 & y = 2 in (1) (3)^2/𝑏^2 + (2)^2/𝑎^2 = 1 9/𝑏^2 + 4/𝑎^2 = 1 Putting x = 1 & y = 6 in (1) 〖(1)〗^2/𝑏^2 + 〖(6)〗^2/𝑎^2 = 1 1/𝑏^2 + 36/𝑎^2 = 1 From (3) 1/𝑏^2 + 36/𝑎^2 = 1 1/𝑏^2 = 1 − 36/𝑎^2 Putting value of b2 in (2) 9/𝑏^2 + 4/𝑎^2 = 1 9(1/𝑏^2 ) + 4/𝑎^2 = 1 9(1−36/𝑎^2 ) + 4/𝑎^2 = 1 9 − 324/𝑎^2 + 4/𝑎^2 = 1 (−320)/𝑎^2 = 1 − 9 (−320)/𝑎^2 = −8 1/𝑎^2 = (−8)/(−320) 1/𝑎^2 = 8/320 1/𝑎^2 = 1/40 a2 = 40 Putting value of 𝑎^2 in (3) 1/𝑏^2 + 36/𝑎^2 = 1 1/𝑏^2 = 1 − 36/𝑎^2 1/𝑏^2 = 1 − 36 (1/40) 1/𝑏^2 = (40 − 36)/40 1/𝑏^2 = 4/40 1/𝑏^2 = 1/10 b2 = 10 Now required equation of ellipse is 𝑥^2/𝑏^2 + 𝑦^2/𝑎^2 = 1 Putting value of b2 & a2 𝒙^𝟐/𝟏𝟎 + 𝒚^𝟐/𝟒𝟎 = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo