Subscribe to our Youtube Channel - https://www.youtube.com/channel/UCZBx269Tl5Os5NHlSbVX4Kg

Last updated at Feb. 6, 2020 by Teachoo

Transcript

Ex 11.3, 18 Find the equation for the ellipse that satisfies the given conditions: b = 3, c = 4, centre at the origin; foci on the x axis. We need to find equation of ellipse Given b = 3, c = 4, centre at the origin & foci on the x axis. Since foci are on the x-axis So, foci are of the form (± c, 0) And major axis is along x-axis & Required equation of ellipse is 𝒙^𝟐/𝒂^𝟐 + 𝒚^𝟐/𝒃^𝟐 = 1 We know that c2 = a2 − b2 Putting value of c = 4 & b = 3 (given) (4) 2 = a2 − (3)2 16 = a 2 − 9 a2 = 16 + 9 a2 = 25 a = 5 Equation of ellipse is 𝑥^2/𝑎^2 + 𝑦^2/𝑏^2 = 1 Putting values 𝑥^2/5^2 + 𝑦^2/3^2 = 1 𝒙^𝟐/𝟐𝟓 + 〖𝒂𝒚〗^𝟐/𝟗 = 1

Ex 11.3

Ex 11.3, 1

Ex 11.3, 2

Ex 11.3, 3

Ex 11.3, 4

Ex 11.3, 5 Important

Ex 11.3, 6

Ex 11.3, 7

Ex 11.3, 8

Ex 11.3, 9

Ex 11.3, 10

Ex 11.3, 11 Important

Ex 11.3, 12 Important

Ex 11.3, 13

Ex 11.3, 14 Important

Ex 11.3, 15

Ex 11.3, 16 Important

Ex 11.3, 17

Ex 11.3, 18 Important You are here

Ex 11.3, 19 Important

Ex 11.3, 20

Chapter 11 Class 11 Conic Sections

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.