web analytics

Ex 11.3, 20 - Find ellipse: Major axis on x-axis, passes - Ellipse - Defination

Slide54.JPG
Slide55.JPG Slide56.JPG Slide57.JPG

  1. Chapter 11 Class 11 Conic Sections
  2. Serial order wise
Ask Download

Transcript

Ex 11.3, 20 Find the equation for the ellipse that satisfies the given conditions: Major axis on the x-axis and passes through the points (4, 3) and (6, 2). Since Major axis is on the x-axis So required equation of ellipse is ﷐﷐𝒙﷮𝟐﷯﷮﷐𝒂﷮𝟐﷯﷯ + ﷐﷐𝒚﷮𝟐﷯﷮﷐𝒃﷮𝟐﷯﷯ = 1 Given that ellipse passes through point (4, 3) & (6, 2) Points (4, 3) & (6, 2) will satisfy the equation of ellipse Putting x = 4 & y = 3 in (1) ﷐﷐(4)﷮2﷯﷮﷐𝑎﷮2﷯﷯ + ﷐﷐(3)﷮2﷯﷮﷐𝑏﷮2﷯﷯ = 1 ﷐16﷮﷐𝑎﷮2﷯﷯ + ﷐9﷮﷐𝑏﷮2﷯﷯ = 1 Putting x = 6 & y = 2 in (1) ﷐﷐(6)﷮2﷯﷮﷐𝑎﷮2﷯﷯ + ﷐﷐(2)﷮2﷯﷮﷐𝑏﷮2﷯﷯ = 1 ﷐36﷮﷐𝑎﷮2﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 Now equation are ﷐16﷮﷐𝑎﷮2﷯﷯ + ﷐9﷮﷐𝑏﷮2﷯﷯ = 1 …(2) ﷐36﷮﷐𝑎﷮2﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 …(3) From (3) ﷐16﷮﷐𝑎﷮2﷯﷯ = 1 − ﷐9﷮﷐𝑏﷮2﷯﷯ ﷐1﷮﷐𝑎﷮2﷯﷯ = ﷐1﷮16﷯ ﷐1 − ﷐9﷮﷐𝑏﷮2﷯﷯﷯ Putting value of ﷐1﷮﷐𝑎﷮2﷯﷯ in (2) ﷐36﷮﷐𝑎﷮2﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 36﷐﷐1﷮﷐𝑎﷮2﷯﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 36﷐﷐1﷮16﷯﷐1−﷐9﷮﷐𝑏﷮2﷯﷯﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 ﷐36﷮16﷯﷐1−﷐9﷮﷐𝑏﷮2﷯﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 ﷐9﷮4﷯﷐1−﷐9﷮﷐𝑏﷮2﷯﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 ﷐9﷮4﷯ − ﷐81﷮﷐𝑏﷮2﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 ﷐−81﷮4﷐𝑏﷮2﷯﷯ + ﷐4﷮﷐𝑏﷮2﷯﷯ = 1 − ﷐9﷮4﷯ ﷐−81 + 16﷮4﷐𝑏﷮2﷯﷯ = ﷐4 − 9﷮4﷯ ﷐−65﷮4﷐𝑏﷮2﷯﷯ = ﷐−5﷮4﷯ ﷐−5﷮4﷯ ﷐﷐13﷮﷐𝑏﷮2﷯﷯﷯= ﷐−5﷮4﷯ ﷐13﷮﷐𝑏﷮2﷯﷯ = 1 ﷐1﷮﷐𝑏﷮2﷯﷯ = ﷐1﷮13﷯ b2 = 13 Putting value of b2 in ﷐1﷮﷐𝑎﷮2﷯﷯ = ﷐1﷮16﷯﷐1 − ﷐9﷮﷐𝑏﷮2﷯﷯﷯ ﷐1﷮﷐𝑎﷮2﷯﷯ = ﷐1﷮16﷯﷐1 − ﷐9﷮13﷯﷯ ﷐1﷮﷐𝑎﷮2﷯﷯ = ﷐1﷮16﷯﷐ ﷐13 − 9﷮13﷯﷯ ﷐1﷮﷐𝑎﷮2﷯﷯ = ﷐1﷮16﷯﷐ ﷐4﷮13﷯﷯ ﷐1﷮﷐𝑎﷮2﷯﷯ = ﷐1﷮4 × 16﷯ ﷐1﷮﷐𝑎﷮2﷯﷯ = ﷐1﷮52﷯ a2 = 52 Equation of ellipse is ﷐﷐𝑥﷮2﷯﷮﷐𝑎﷮2﷯﷯ + ﷐﷐𝑦﷮2﷯﷮﷐𝑏﷮2﷯﷯ = 1 Putting value of a2 & b2 ﷐﷐𝒙﷮𝟐﷯﷮𝟓𝟐﷯ + ﷐﷐𝒚﷮𝟐﷯﷮𝟏𝟑﷯ = 1

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail