Subscribe to our Youtube Channel - https://you.tube/teachoo

Last updated at Jan. 30, 2020 by Teachoo

Transcript

Example 24 In how many ways can 5 girls and 3 boys be seated in a row so that no two boys are together? The seating arrangement would be as follows Hence total number of ways they can sit = 120 × 120 = 14400 ways 5 girls can sit in any of 5 places Number of ways they can sit = 5P5 = 5!/(5 − 5)! = 5!/0! = 5!/1 = 5 × 4 × 3 × 2 × 1 = 120 3 boys can sit at any of 6 places marked Number of ways they can sit = 6P3 = 6!/(6 − 3)! = 6!/3! = (6 × 5 × 4 × 3!)/3! = 120

Examples

Example 1

Example 2

Example 3

Example 4 Important

Example 5

Example 6

Example 7

Example 8 Important

Example 9

Example 10

Example 11 Important

Example 12 Important

Example 13

Example 14 Important

Example 15

Example 16 Important

Example 17

Example 18

Example 19 Important

Example 20 Important

Example 21 Important

Example 22 Important

Example 23 Important

Example 24 Important You are here

Chapter 7 Class 11 Permutations and Combinations

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.