Last updated at May 29, 2018 by Teachoo

Transcript

Example 14 Find the number of different 8-letter arrangements that can be made from the letters of the word DAUGHTER so that all vowels occur together Total number of letter in DAUGHTER = 8 Vowels in DAUGHTER = A, U & E Since all vowels occur together, Assume as single object. So, our word becomes Total number of arrangements = 720 × 6 = 4320 Example 14 Find the number of different 8-letter arrangements that can be made from the letters of the word DAUGHTER so that (ii) all vowels do not occur together. No of permutation in which all vowels are never together = Total number of permutation – number of permutation all vowels come together Total permutations Number of words in DAUGHTER = 8 Total no of permutation of 8 letters = 8P8 = 8!/(8 − 8)! = 8!/0! = 8!/1 = 8! = 40320 No of permutation in which all vowels are never together = Total number of permutation – number of permutation all vowels come together = 40320 – 4320 = 36000

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12

Example 13 Important

Example 14 You are here

Example 15

Example 16 Important

Example 17

Example 18

Example 19 Important

Example 20

Example 21

Example 22

Example 23 Important

Example 24

Chapter 7 Class 11 Permutations and Combinations

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.