Last updated at May 29, 2018 by Teachoo

Transcript

Example 12 Find the value of n such that (ii) "nP4" /"nโ1P4" = 5/3 , n > 4 Lets first calculate nP4 and n โ 1P4 nP4 = ๐!/(๐ โ 4)! = (๐(๐โ1)(๐โ2)(๐โ3)(๐โ4)!)/(๐โ4)! = n(n โ 1)(n โ 2)(n โ 3) Now "nP4" /"nโ1P4" = 5/3 3 nP4 = 5 n-1P4 3(n)(n โ 1)(n โ 2)(n โ 3) = 5(n โ 1) (n โ 2) (n โ 3) (n โ 4) (3๐(๐ โ1)(๐ โ2)(๐ โ 3))/((๐ โ1)(๐ โ2)(๐ โ 3)) = 5(n โ 4) 3n = 5(n โ 4) 3n = 5n โ 20 20 = 5n โ 3n 20 = 2n 20/2 = n 10 = n Hence n = 10. Example 12 Find the value of n such that nP5 = 42 nP3, n > 4 nP5 = 42 nP3 Calculating nP5 nP5 = ๐!/(๐โ5)! = (๐(๐โ1)(๐โ2)(๐โ3)(๐โ4)(๐โ5)!)/(๐โ5)! = n(n โ 1)(n โ 2)(n โ 3)(n โ 4) Now, it is given that nP5 = 42 nP3 n(n โ 1)(n โ 2)(n โ 3)(n โ 4) = 42n(n โ 1)(n โ 2) (๐(๐โ1)(๐โ2)(๐โ3)(๐โ4)(๐โ5)!)/(๐(๐ โ 1)(๐ โ 2)!) = 42 (n โ 3)(n โ 4) = 42 n(n - 4) โ 3(n โ 4) = 42 n2 โ 4n โ 3n + 12 = 42 n2 โ 7n + 12 = 42 n2 โ 7n + 12 โ 42 = 0 n2 โ 10n + 3n โ 30 = 0 n(n โ 10) + 3(n โ 10) = 0 (n โ 10) (n + 3) = 0 Hence, n = 10 & n = โ 3 But, It is given in question n > 4 So n = -3 not possible Therefore, n = 10 only

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12 You are here

Example 13 Important

Example 14

Example 15

Example 16 Important

Example 17

Example 18

Example 19 Important

Example 20

Example 21

Example 22

Example 23 Important

Example 24

Chapter 7 Class 11 Permutations and Combinations

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.