Question 5 - Area as a sum - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 5 ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 Putting 𝑎 =−1 𝑏 =1 ℎ=(𝑏 − 𝑎)/𝑛 =(1 − (−1))/𝑛 =(1 + 1)/𝑛=2/𝑛 𝑓(𝑥)=𝑒^𝑥 We know that ∫1_𝑎^𝑏▒〖𝑥 𝑑𝑥〗 =(𝑏−𝑎) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)…+𝑓(𝑎+(𝑛−1)ℎ)) Hence we can write ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 =(1 −(−1)) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(−1)+𝑓(−1+ℎ)+𝑓(−1+2ℎ)+ …+𝑓(−1+(𝑛−1)ℎ)) =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(−1)+𝑓(−1+ℎ)+𝑓(−1+2ℎ)+ …+𝑓(−1+(𝑛−1)ℎ)) Here, 𝑓(𝑥)=𝑒^𝑥 𝑓(−1)=𝑒^(−1) 𝑓(−1+ℎ)=𝑒^(−1 + ℎ) =𝑒^(−1). 𝑒^ℎ 𝑓 (−1+2ℎ)=𝑒^(−1 + 2ℎ)=𝑒^(−1). 𝑒^2ℎ 𝑓(−1+(𝑛−1)ℎ)=𝑒^(−1 + (𝑛 − 1)ℎ)=𝑒^(−1).𝑒^(𝑛 − 1)ℎ Hence, our equation becomes ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(−1)+𝑓(−1+ℎ)+𝑓(−1+2ℎ)+ …+𝑓(−1+(𝑛−1)ℎ)) =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑒^(−1)+𝑒^(−1). 𝑒^ℎ+𝑒^(−1). 𝑒^2ℎ+ …+𝑒^(−1).𝑒^(𝑛−1)ℎ ) =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑒^(−1) (1+ℎ+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ )) =2𝑒^(−1) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (1+ℎ+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ ) Let S = 1+ℎ+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ It is G.P with common ratio (r) 𝑟 = 𝑒^ℎ/1 = 𝑒^ℎ We know Sum of G.P = a((𝑟^𝑛 − 1)/(𝑟 − 1)) Replacing a by 1 and r by 𝑒^𝑛 , we get S = 1(((𝑒^ℎ )^𝑛 − 1)/(𝑒^𝑛 − 1))= (𝑒^𝑛ℎ − 1)/(𝑒^𝑛 − 1) Thus, ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 =2 . 𝑒^(−1) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (1+𝑒^𝑛+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ((𝑒^𝑛ℎ − 1)/(𝑒^𝑛 − 1)) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ((𝑒^𝑛ℎ − 1)/(ℎ . (𝑒^ℎ − 1)/ℎ)) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . 1/( (𝑒^ℎ − 1)/ℎ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . (𝑙𝑖𝑚)┬(𝑛→∞) 1/( (𝑒^ℎ − 1)/ℎ) Solving (𝐥𝐢𝐦)┬(𝐧→∞) ( 𝟏)/(( 𝒆^𝒉 − 𝟏)/𝒉) As n→∞ ⇒ 2/ℎ →∞ ⇒ ℎ →0 ∴ lim┬(n→∞) ( 1)/(( 𝑒^ℎ − 1)/ℎ) = lim┬(h→0) ( 1)/(( 𝑒^ℎ − 1)/ℎ) = 1/1 = 1 Thus, our equation becomes ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . (𝑙𝑖𝑚)┬(𝑛→∞) 1/( (𝑒^ℎ − 1)/ℎ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . 1 = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(𝑛 . 2/𝑛) − 1)/(𝑛 (2/𝑛) ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^2 − 1)/2 (𝑈𝑠𝑖𝑛𝑔 (𝑙𝑖𝑚)┬(𝑡→0) (𝑒^𝑡 − 1)/𝑡 =1) (𝑈𝑠𝑖𝑛𝑔 ℎ=2/𝑛) = 2/𝑒 . (𝑒^2 − 1)/2 = (𝑒^2 − 1)/𝑒 = 𝑒^2/𝑒 − 1/𝑒 =𝒆 − 𝟏/𝒆
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo