Check sibling questions


Transcript

Question 5 ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 Putting 𝑎 =−1 𝑏 =1 ℎ=(𝑏 − 𝑎)/𝑛 =(1 − (−1))/𝑛 =(1 + 1)/𝑛=2/𝑛 𝑓(𝑥)=𝑒^𝑥 We know that ∫1_𝑎^𝑏▒〖𝑥 𝑑𝑥〗 =(𝑏−𝑎) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)…+𝑓(𝑎+(𝑛−1)ℎ)) Hence we can write ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 =(1 −(−1)) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(−1)+𝑓(−1+ℎ)+𝑓(−1+2ℎ)+ …+𝑓(−1+(𝑛−1)ℎ)) =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(−1)+𝑓(−1+ℎ)+𝑓(−1+2ℎ)+ …+𝑓(−1+(𝑛−1)ℎ)) Here, 𝑓(𝑥)=𝑒^𝑥 𝑓(−1)=𝑒^(−1) 𝑓(−1+ℎ)=𝑒^(−1 + ℎ) =𝑒^(−1). 𝑒^ℎ 𝑓 (−1+2ℎ)=𝑒^(−1 + 2ℎ)=𝑒^(−1). 𝑒^2ℎ 𝑓(−1+(𝑛−1)ℎ)=𝑒^(−1 + (𝑛 − 1)ℎ)=𝑒^(−1).𝑒^(𝑛 − 1)ℎ Hence, our equation becomes ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(−1)+𝑓(−1+ℎ)+𝑓(−1+2ℎ)+ …+𝑓(−1+(𝑛−1)ℎ)) =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑒^(−1)+𝑒^(−1). 𝑒^ℎ+𝑒^(−1). 𝑒^2ℎ+ …+𝑒^(−1).𝑒^(𝑛−1)ℎ ) =2 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑒^(−1) (1+ℎ+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ )) =2𝑒^(−1) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (1+ℎ+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ ) Let S = 1+ℎ+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ It is G.P with common ratio (r) 𝑟 = 𝑒^ℎ/1 = 𝑒^ℎ We know Sum of G.P = a((𝑟^𝑛 − 1)/(𝑟 − 1)) Replacing a by 1 and r by 𝑒^𝑛 , we get S = 1(((𝑒^ℎ )^𝑛 − 1)/(𝑒^𝑛 − 1))= (𝑒^𝑛ℎ − 1)/(𝑒^𝑛 − 1) Thus, ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 =2 . 𝑒^(−1) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (1+𝑒^𝑛+𝑒^2ℎ+ …+𝑒^(𝑛−1)ℎ ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ((𝑒^𝑛ℎ − 1)/(𝑒^𝑛 − 1)) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ((𝑒^𝑛ℎ − 1)/(ℎ . (𝑒^ℎ − 1)/ℎ)) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . 1/( (𝑒^ℎ − 1)/ℎ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . (𝑙𝑖𝑚)┬(𝑛→∞) 1/( (𝑒^ℎ − 1)/ℎ) Solving (𝐥𝐢𝐦)┬(𝐧→∞) ( 𝟏)/(( 𝒆^𝒉 − 𝟏)/𝒉) As n→∞ ⇒ 2/ℎ →∞ ⇒ ℎ →0 ∴ lim┬(n→∞) ( 1)/(( 𝑒^ℎ − 1)/ℎ) = lim┬(h→0) ( 1)/(( 𝑒^ℎ − 1)/ℎ) = 1/1 = 1 Thus, our equation becomes ∫1_(−1)^1▒〖𝑒𝑥 𝑑𝑥〗 = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . (𝑙𝑖𝑚)┬(𝑛→∞) 1/( (𝑒^ℎ − 1)/ℎ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^𝑛ℎ − 1)/𝑛ℎ . 1 = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(𝑛 . 2/𝑛) − 1)/(𝑛 (2/𝑛) ) = 2/𝑒 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^2 − 1)/2 (𝑈𝑠𝑖𝑛𝑔 (𝑙𝑖𝑚)┬(𝑡→0) (𝑒^𝑡 − 1)/𝑡 =1) (𝑈𝑠𝑖𝑛𝑔 ℎ=2/𝑛) = 2/𝑒 . (𝑒^2 − 1)/2 = (𝑒^2 − 1)/𝑒 = 𝑒^2/𝑒 − 1/𝑒 =𝒆 − 𝟏/𝒆

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo