This Question was also asked in CBSE Maths Board Exam - 2020 (Question 34 - Set 65/5/1)
Last updated at Dec. 16, 2024 by Teachoo
Question 4 β«1_1^4β(π₯2 βπ₯)ππ₯ Let I = β«1_1^4β(π₯2 βπ₯)ππ₯ I = β«1_1^4βγ π₯2 ππ₯γββ«1_1^4βγ π₯ ππ₯γ Solving I1 and I2 separately Solving I1 β«1_1^4βγπ₯2 ππ₯γ Putting π =1 π =4 β=(π β π)/π =(4 β 1)/π =3/π π(π₯)=π₯^2 We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«1_1^4βγπ₯2 ππ₯γ =(4β1) (πππ)β¬(πββ) 1/π (π(1)+π(1+β)+π(1+2β)+ β¦+π(1+(πβ1)β)) =3 (πππ)β¬(πββ) 1/π (π(1)+π(1+β)+π(1+2β)+ β¦+π(1+(πβ1)β)) Here, π(π₯)=π₯^2 π(1)=(1)^2=1 π(1+β)=(1+β)^2 π (1+2β)=(1+2β)^2 β¦ π(1+(πβ1)β)=(1+(πβ1)β)^2 Hence, our equation becomes β«1_1^4βγπ₯2 ππ₯γ " " =3 (πππ)β¬(πββ) 1/π (π(1)+π(1+β)+π(1+2β)+ β¦+π(1+(πβ1)β)) =3 (πππ)β¬(πββ) 1/π ((1)^2+(1+β)^2+(1+2β)^2+ β¦+(1+(πβ1)β)^2 ) =3 (πππ)β¬(πββ) 1/π (β(1^2+(1^2+β^2+2β)+γ(1γ^2+ (2β)^2+4β)+ β¦β¦ @ β¦+(1^2+((πβ1)β)^2+2(πβ1) β) )) =3 (πππ)β¬(πββ) 1/π [1^2+1^2+ β¦ +1^2 ] + β^2+(2β)^2+ β¦ +(πβ1)β^2 + [2β+4β+ β¦ +2(πβ1)β] =3 (πππ)β¬(πββ) 1/π (γπ(1)γ^2+[β^2+(2)^2 . β^2+ β¦ +(πβ1)^2 β^2 ] +[2β+2Γ2β+ β¦ +(πβ1)Γ2β] ) =3 (πππ)β¬(πββ) 1/π(π+π^2 [(1)^2+(2)^2+ β¦+(πβ1)^2 ] +ππ [1+2+ β¦+(πβ1)]) =3 (πππ)β¬(πββ) 1/π (π+β^2 [π(π β 1)(2π β 1)/6]+2β[π(π β 1)/2] ) We know that 1^2+2^2+ β¦+π^2= (π (π + 1)(2π + 1))/6 1^2+2^2+ β¦β¦+(πβ1)^2 = ((π β 1) (π β1 + 1)(2(π β 1) + 1))/6 = ((π β 1) π (2π β 2 + 1) )/6 = (π (π β 1) (2π β 1) )/6 We know that 1+2+3+ β¦β¦+π= (π (π + 1))/2 1+2+3+ β¦β¦+(πβ1) = ((π β 1) (π β 1 + 1))/2 = (π (π β 1) )/2 =3 (πππ)β¬(πββ) 1/π (π+β^2 [π(π β 1)(2π β 1)]/6+β[π(π β 1)] ) =3 (πππ)β¬(πββ) (π/π+β^2 [π(π β 1)(2π β 1)/6π]+β[π(π β 1)/π]) =3 (πππ)β¬(πββ) (1+β^2 [(π β 1)(2π β 1)/6]+β[(π β 1)]) =3 (πππ)β¬(πββ) (1+(3/π)^2 (π β 1)(2π β 1)/6+(3/π)(π β 1)) =3 (πππ)β¬(πββ) (1+9/π^2 . (π β 1)(2π β 1)/6 +3(1 β 1/π)) =3 (πππ)β¬(πββ) (1+ 9(1 β 1/π)(2 β 1/π)/6 +3(1 β 1/π)) =3(1+ 9(1 β 1/β)(2 β 1/β)/6 +3(1 β 1/β)) =3(1+ 9(1 β 0)(2 β 0)/6 +3(1 β0)) =3(1+ (9 Γ 1 Γ 2)/6 +3) =3(1+3+3) =3Γ7 =ππ Solving I2 β«1_1^4βγπ₯ ππ₯γ Putting π =1 π =4 β=(π β π)/π =(4 β 1)/π =3/π π(π₯)=π₯ We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«1_1^4βγπ₯ ππ₯γ =(4β1) limβ¬(nββ) 1/π (π(1)+π(1+β)+π(1+2β)+β¦ +π(1+(πβ1)β) =3 limβ¬(nββ) 1/π (π(1)+π(1+β)+π(1+2β)+β¦ +π(1+(πβ1)β) Here, π(π₯)=π₯ π(1)=1 π(1+β)=1+β π (1+2β)=1+2β π(1+(πβ1)β)=1+(πβ1)β Hence, our equation becomes β«_1^4βπ₯ ππ₯ =3 limβ¬(nββ) 1/π (π(1)+π(1+β)+π(1+2β)+β¦ +π(1+(πβ1)β) = 3 (πππ)β¬(πββ) 1/π (1+(1+β)+(1+2β)+ β¦+(1+(πβ1)β)) = 3 (πππ)β¬(πββ) 1/π (1+1+ β¦+1 +β+2β+ β¦β¦+(πβ1)β) = 3 (πππ)β¬(πββ) 1/π ( π\ Γ1+β (1+2+ β¦β¦β¦+(πβ1))) We know that 1+2+3+ β¦β¦+π= (π (π + 1))/2 1+2+3+ β¦β¦+πβ1= ((π β 1) (π β 1 + 1))/2 = (π (π β 1) )/2 = 3 (πππ)β¬(πββ) 1/π ( π+(β . π(π β 1))/2) = 3 (πππ)β¬(πββ) ( π/π+π(π β 1)β/2π) = 3 (πππ)β¬(πββ) ( 1+(π β 1)β/2) = 3 (πππ)β¬(πββ) ( 1+(π β 1)3/(2 . π)) = 3 (πππ)β¬(πββ) ( 1+(π/π β 1/π) 3/2) [ππ πππ β=3/π] = 3 (πππ)β¬(πββ) ( 1+(1β 1/π) (3 )/2) = 3( 1+(1β 1/β) (3 )/2) = 3( 1+(1β0) 3/2) = 3(1+ (3 )/2) = 3((5 )/2) = ππ/π Putting the values of I1 and I2 in I β΄ "I = " β«1_1^4βγ π₯2 ππ₯γββ«1_1^4βγ π₯ ππ₯γ = 21 β 15/2 = (42 β 15)/2 = ππ/π
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo