Check sibling questions


Transcript

Question 3 โˆซ1_2^3โ–’ใ€–๐‘ฅ2 ๐‘‘๐‘ฅใ€— โˆซ1_2^3โ–’ใ€–๐‘ฅ2 ๐‘‘๐‘ฅใ€— Putting ๐‘Ž =2 ๐‘ =3 โ„Ž=(๐‘ โˆ’ ๐‘Ž)/๐‘› =(3 โˆ’ 2)/๐‘› =1/๐‘› ๐‘“(๐‘ฅ)=๐‘ฅ^2 We know that โˆซ1_๐‘Ž^๐‘โ–’ใ€–๐‘ฅ ๐‘‘๐‘ฅใ€— =(๐‘โˆ’๐‘Ž) (๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (๐‘“(๐‘Ž)+๐‘“(๐‘Ž+โ„Ž)+๐‘“(๐‘Ž+2โ„Ž)โ€ฆ+๐‘“(๐‘Ž+(๐‘›โˆ’1)โ„Ž)) Hence we can write โˆซ1_2^3โ–’ใ€–๐‘ฅ2 ๐‘‘๐‘ฅใ€— =(3โˆ’2) (๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (๐‘“(2)+๐‘“(2+โ„Ž)+๐‘“(2+2โ„Ž)+ โ€ฆ+๐‘“(2+(๐‘›โˆ’1)โ„Ž)) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (๐‘“(2)+๐‘“(2+โ„Ž)+๐‘“(2+2โ„Ž)+ โ€ฆ+๐‘“(2+(๐‘›โˆ’1)โ„Ž)) Here, ๐‘“(๐‘ฅ)=๐‘ฅ^2 ๐‘“(2)=(2)^2=4 ๐‘“(2+โ„Ž)=(2+โ„Ž)^2 ๐‘“ (2+2โ„Ž)=(2+2โ„Ž)^2 โ€ฆ ๐‘“(2+(๐‘›โˆ’1)โ„Ž)=(2+(๐‘›โˆ’1)โ„Ž)^2 Hence, our equation becomes โˆซ1_2^3โ–’ใ€–๐‘ฅ2 ๐‘‘๐‘ฅใ€— " " =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (๐‘“(2)+๐‘“(2+โ„Ž)+๐‘“(2+2โ„Ž)+ โ€ฆ+๐‘“(2+(๐‘›โˆ’1)โ„Ž)) =1 (๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› ((2)^2+(2+โ„Ž)^2+(2+2โ„Ž)^2+ โ€ฆ+(2+(๐‘›โˆ’1)โ„Ž)^2 ) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (โ–ˆ(2^2+(2^2+โ„Ž^2+4โ„Ž)+ใ€–(2ใ€—^2+(2โ„Ž)^2+8โ„Ž)+ โ€ฆโ€ฆ @ โ€ฆ+(2^2+((๐‘›โˆ’1)โ„Ž)^2+4(๐‘›โˆ’1) โ„Ž) )) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› [2^2+2^2+ โ€ฆ +2^2 ] + โ„Ž^2+(2โ„Ž)^2+ โ€ฆ +(๐‘›โˆ’1)โ„Ž^2 + [4โ„Ž+8โ„Ž+ โ€ฆ +4(๐‘›โˆ’1)โ„Ž] =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (ใ€–๐‘›(2)ใ€—^2+[โ„Ž^2+(2)^2 . โ„Ž^2+ โ€ฆ +(๐‘›โˆ’1)^2 โ„Ž^2 ] +[4โ„Ž+2ร—4โ„Ž+ โ€ฆ +(๐‘›โˆ’1)ร—4โ„Ž] ) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘›(๐‘›(2)^2+๐’‰^2 [(1)^2+(2)^2+ โ€ฆ+(๐‘›โˆ’1)^2 ] + ๐Ÿ’๐’‰ [1+2+ โ€ฆ+(๐‘›โˆ’1)]) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (๐‘›(2)^2+โ„Ž^2 [๐‘›(๐‘› โˆ’ 1)(2๐‘› โˆ’ 1)/6]+4โ„Ž[๐‘›(๐‘› โˆ’ 1)/2] ) We know that 1^2+2^2+ โ€ฆ+๐‘›^2= (๐‘› (๐‘› + 1)(2๐‘› + 1))/6 1^2+2^2+ โ€ฆโ€ฆ+(๐‘›โˆ’1)^2 = ((๐‘› โˆ’ 1) (๐‘› โˆ’1 + 1)(2(๐‘› โˆ’ 1) + 1))/6 = ((๐‘› โˆ’ 1) ๐‘› (2๐‘› โˆ’ 2 + 1) )/6 = (๐‘› (๐‘› โˆ’ 1) (2๐‘› โˆ’ 1) )/6 We know that 1+2+3+ โ€ฆโ€ฆ+๐‘›= (๐‘› (๐‘› + 1))/2 1+2+3+ โ€ฆโ€ฆ+(๐‘›โˆ’1) = ((๐‘› โˆ’ 1) (๐‘› โˆ’ 1 + 1))/2 = (๐‘› (๐‘› โˆ’ 1) )/2 =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) 1/๐‘› (4๐‘›+โ„Ž^2 [๐‘›(๐‘› โˆ’ 1)(2๐‘› โˆ’ 1)]/6+2โ„Ž[๐‘›(๐‘› โˆ’ 1)] ) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) (4๐‘›/๐‘›+โ„Ž^2 [๐‘›(๐‘› โˆ’ 1)(2๐‘› โˆ’ 1)/6๐‘›]+2โ„Ž[๐‘›(๐‘› โˆ’ 1)/๐‘›]) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) (4+โ„Ž^2 [(๐‘› โˆ’ 1)(2๐‘› โˆ’ 1)/6]+2โ„Ž[(๐‘› โˆ’ 1)]) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) (4+(1/๐‘›)^2 (๐‘› โˆ’ 1)(2๐‘› โˆ’ 1)/6+2(1/๐‘›)(๐‘› โˆ’ 1)) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) (4+1/๐‘›^2 . (๐‘› โˆ’ 1)(2๐‘› โˆ’ 1)/6 +2(1 โˆ’ 1/๐‘›)) =(๐‘™๐‘–๐‘š)โ”ฌ(๐‘›โ†’โˆž) (4+ (1 โˆ’ 1/๐‘›)(2 โˆ’ 1/๐‘›)/6 +2(1 โˆ’ 1/๐‘›)) =4+ (1 โˆ’ 1/โˆž)(2 โˆ’ 1/โˆž)/6 +2(1 โˆ’ 1/โˆž) =4+ (1 โˆ’ 0)(2 โˆ’ 0)/6 +2(1 โˆ’0) =4+ (1 . 2)/6 +2 .1 =4+ 1/3 +2 =6+ 1/3 = ๐Ÿ๐Ÿ—/๐Ÿ‘

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo