Last updated at Dec. 16, 2024 by Teachoo
Ex 11.2, 14 Find the shortest distance between the lines whose vector equations are ๐ โ = (๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐ (๐ ฬ โ 3๐ ฬ + 2๐ ฬ) and ๐ โ = (4๐ ฬ + 5๐ ฬ + 6๐ ฬ) + ๐ (2๐ ฬ + 3๐ ฬ + ๐ ฬ)Shortest distance between the lines with vector equations ๐ โ = (๐_1 ) โ + ๐ (๐"1" ) โ and ๐ โ = (๐"2" ) โ + ๐(๐"2" ) โ is |(((๐๐) โ ร (๐๐) โ ).((๐๐) โ โ (๐๐) โ ))/|(๐๐) โ ร (๐๐) โ | | Given, ๐ โ = (๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐ (๐ ฬ โ 3๐ ฬ + 2๐ ฬ) Comparing with ๐ โ = (๐1) โ + ๐ (๐1) โ, (๐1) โ = 1๐ ฬ + 2๐ ฬ + 3๐ ฬ & (๐1) โ = 1๐ ฬ โ 3๐ ฬ + 2๐ ฬ ๐ โ = (4๐ ฬ + 5๐ ฬ + 6๐ ฬ) + ๐(2๐ ฬ + 3๐ ฬ + ๐ ฬ) Comparing with ๐ โ = (๐2) โ + ๐(๐2) โ, (๐2) โ = 4๐ ฬ + 5๐ ฬ + 6๐ ฬ & (๐2) โ = 2๐ ฬ + 3๐ ฬ + 1๐ ฬ Now, ((๐๐) โ โ (๐๐) โ) = (4๐ ฬ + 5๐ ฬ + 6๐ ฬ) โ (1๐ ฬ + 2๐ ฬ + 3๐ ฬ) = (4 โ 1)๐ ฬ + (5 โ 2) ๐ ฬ + (6 โ 3) ๐ = 3๐ ฬ + 3๐ ฬ + 3๐ ฬ ((๐๐) โ ร (๐๐) โ) = |โ 8(๐ ฬ&๐ ฬ&๐ ฬ@1& โ3&2@2&3&1)| = ๐ ฬ [(โ3ร1)โ(3ร2)] โ ๐ ฬ [(1ร1)โ(2ร2)] + ๐ ฬ [(1ร3)โ(2รโ3)] = ๐ ฬ [โ3โ6] โ ๐ ฬ [1โ4] + ๐ ฬ [3+6] = ๐ ฬ (โ9) โ ๐ ฬ (โ3) + ๐ ฬ(9) = โ 9๐ ฬ + 3๐ ฬ + 9๐ ฬ Magnitude of ((๐1) โ ร (๐2) โ) = โ((โ 9)2+32+92) |(๐๐) โ" ร " (๐๐) โ | = โ(81+9+81) = โ171 = โ(9ร19 ) = 3โ๐๐ Also, ((๐๐) โ ร (๐๐) โ) . ((๐๐) โ โ (๐๐) โ) = (โ9๐ ฬ + 3๐ ฬ + 9๐ ฬ).(3๐ ฬ + 3๐ ฬ + 3๐ ฬ) = (โ9 ร 3) + (3 ร 3) + (9 ร 3) = โ27 + 9 + 27 = 9 So, shortest distance = |("(" (๐1) โร" " (๐2) โ")" ."(" (๐2) โ โ" " (๐1) โ")" )/|(๐1) โร (๐2) โ | | = |9/(3โ19)| = ๐/โ๐๐ Therefore, shortest distance between the given two lines is 3/โ19.
Ex 11.2
Ex 11.2, 2
Ex 11.2, 3 Important
Ex 11.2, 4
Ex 11.2, 5 Important
Ex 11.2, 6
Ex 11.2, 7 Important
Ex 11.2, 8 (i) Important
Ex 11.2, 8 (ii)
Ex 11.2, 9 (i) Important
Ex 11.2, 9 (ii)
Ex 11.2, 10 Important
Ex 11.2, 11
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 14 You are here
Ex 11.2, 15 Important
Question 1 Important
Question 2
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo