Check sibling questions


Transcript

Ex 11.2, 14 Find the shortest distance between the lines whose vector equations are ๐‘Ÿ โƒ— = (๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) + ๐œ† (๐‘– ฬ‚ โ€“ 3๐‘— ฬ‚ + 2๐‘˜ ฬ‚) and ๐‘Ÿ โƒ— = (4๐‘– ฬ‚ + 5๐‘— ฬ‚ + 6๐‘˜ ฬ‚) + ๐œ‡ (2๐‘– ฬ‚ + 3๐‘— ฬ‚ + ๐‘˜ ฬ‚)Shortest distance between the lines with vector equations ๐‘Ÿ โƒ— = (๐‘Ž_1 ) โƒ— + ๐œ† (๐‘"1" ) โƒ— and ๐‘Ÿ โƒ— = (๐‘Ž"2" ) โƒ— + ๐œ‡(๐‘"2" ) โƒ— is |(((๐’ƒ๐Ÿ) โƒ— ร— (๐’ƒ๐Ÿ) โƒ— ).((๐’‚๐Ÿ) โƒ— โˆ’ (๐’‚๐Ÿ) โƒ— ))/|(๐’ƒ๐Ÿ) โƒ— ร— (๐’ƒ๐Ÿ) โƒ— | | Given, ๐’“ โƒ— = (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) + ๐œ† (๐’Š ฬ‚ โˆ’ 3๐’‹ ฬ‚ + 2๐’Œ ฬ‚) Comparing with ๐‘Ÿ โƒ— = (๐‘Ž1) โƒ— + ๐œ† (๐‘1) โƒ—, (๐‘Ž1) โƒ— = 1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ & (๐‘1) โƒ— = 1๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ + 2๐‘˜ ฬ‚ ๐’“ โƒ— = (4๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 6๐’Œ ฬ‚) + ๐(2๐’Š ฬ‚ + 3๐’‹ ฬ‚ + ๐’Œ ฬ‚) Comparing with ๐‘Ÿ โƒ— = (๐‘Ž2) โƒ— + ๐œ‡(๐‘2) โƒ—, (๐‘Ž2) โƒ— = 4๐‘– ฬ‚ + 5๐‘— ฬ‚ + 6๐‘˜ ฬ‚ & (๐‘2) โƒ— = 2๐‘– ฬ‚ + 3๐‘— ฬ‚ + 1๐‘˜ ฬ‚ Now, ((๐’‚๐Ÿ) โƒ— โˆ’ (๐’‚๐Ÿ) โƒ—) = (4๐‘– ฬ‚ + 5๐‘— ฬ‚ + 6๐‘˜ ฬ‚) โˆ’ (1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) = (4 โˆ’ 1)๐‘– ฬ‚ + (5 โˆ’ 2) ๐‘— ฬ‚ + (6 โˆ’ 3) ๐‘˜ = 3๐’Š ฬ‚ + 3๐’‹ ฬ‚ + 3๐’Œ ฬ‚ ((๐’ƒ๐Ÿ) โƒ— ร— (๐’ƒ๐Ÿ) โƒ—) = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@1& โˆ’3&2@2&3&1)| = ๐‘– ฬ‚ [(โˆ’3ร—1)โˆ’(3ร—2)] โˆ’ ๐‘— ฬ‚ [(1ร—1)โˆ’(2ร—2)] + ๐‘˜ ฬ‚ [(1ร—3)โˆ’(2ร—โˆ’3)] = ๐‘– ฬ‚ [โˆ’3โˆ’6] โˆ’ ๐‘— ฬ‚ [1โˆ’4] + ๐‘˜ ฬ‚ [3+6] = ๐‘– ฬ‚ (โˆ’9) โˆ’ ๐‘— ฬ‚ (โˆ’3) + ๐‘˜ ฬ‚(9) = โˆ’ 9๐’Š ฬ‚ + 3๐’‹ ฬ‚ + 9๐’Œ ฬ‚ Magnitude of ((๐‘1) โƒ— ร— (๐‘2) โƒ—) = โˆš((โˆ’ 9)2+32+92) |(๐’ƒ๐Ÿ) โƒ—" ร— " (๐’ƒ๐Ÿ) โƒ— | = โˆš(81+9+81) = โˆš171 = โˆš(9ร—19 ) = 3โˆš๐Ÿ๐Ÿ— Also, ((๐’ƒ๐Ÿ) โƒ— ร— (๐’ƒ๐Ÿ) โƒ—) . ((๐’‚๐Ÿ) โƒ— โ€“ (๐’‚๐Ÿ) โƒ—) = (โˆ’9๐‘– ฬ‚ + 3๐‘— ฬ‚ + 9๐‘˜ ฬ‚).(3๐‘– ฬ‚ + 3๐‘— ฬ‚ + 3๐‘˜ ฬ‚) = (โˆ’9 ร— 3) + (3 ร— 3) + (9 ร— 3) = โˆ’27 + 9 + 27 = 9 So, shortest distance = |("(" (๐‘1) โƒ—ร—" " (๐‘2) โƒ—")" ."(" (๐‘Ž2) โƒ— โˆ’" " (๐‘Ž1) โƒ—")" )/|(๐‘1) โƒ—ร— (๐‘2) โƒ— | | = |9/(3โˆš19)| = ๐Ÿ‘/โˆš๐Ÿ๐Ÿ— Therefore, shortest distance between the given two lines is 3/โˆš19.

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo