Check sibling questions


Transcript

Ex 11.2, 11 Show that the lines (๐‘ฅ โˆ’ 5)/7 = (๐‘ฆ + 2)/( โˆ’5) = ๐‘ง/1 and ๐‘ฅ/1 = ๐‘ฆ/2 = ๐‘ง/3 are perpendicular to each other. Two lines (๐‘ฅ โˆ’ ๐‘ฅ1)/๐‘Ž1 = (๐‘ฆ โˆ’ ๐‘ฆ1)/๐‘1 = (๐‘ง โˆ’ ๐‘ง1)/๐‘1 and (๐‘ฅ โˆ’ ๐‘ฅ2)/๐‘Ž2 = (๐‘ฆ โˆ’ ๐‘ฆ2)/๐‘2 = (๐‘ง โˆ’ ๐‘ง2)/๐‘2 are perpendicular to each other if ๐’‚๐Ÿ ๐’‚๐Ÿ + ๐’ƒ๐Ÿ ๐’ƒ๐Ÿ + ๐’„๐Ÿ ๐’„๐Ÿ = 0 (๐’™ โˆ’ ๐Ÿ“)/๐Ÿ• = (๐’š + ๐Ÿ)/( โˆ’ ๐Ÿ“) = ๐’›/๐Ÿ (๐‘ฅ โˆ’ 5)/7 = (๐‘ฆ โˆ’ (โˆ’2))/( โˆ’5) = (๐‘ง โˆ’ 0)/1 Comparing with (๐‘ฅ โˆ’ ๐‘ฅ1)/๐‘Ž1 = (๐‘ฆ โˆ’ ๐‘ฆ1)/๐‘1 = (๐‘ง โˆ’ ๐‘ง1)/๐‘1, So, ๐‘ฅ1 = 5, y1 = โˆ’2, ๐‘ง1 = 0 & ๐’‚๐Ÿ = 7, ๐’ƒ๐Ÿ = โˆ’ 5, ๐’„๐Ÿ = 1, ๐’™/๐Ÿ = ๐’š/๐Ÿ = ๐’›/๐Ÿ‘ (๐‘ฅ โˆ’ 0)/1 = (๐‘ฆ โˆ’ 0)/2 = (๐‘ง โˆ’ 0)/3 Comparing with (๐‘ฅ โˆ’ ๐‘ฅ2)/๐‘Ž2 = (๐‘ฆ โˆ’ ๐‘ฆ2)/๐‘2 = (๐‘ง โˆ’ ๐‘ง2)/๐‘2, So, x2 = 0, y2 = 0, z2 = 0, & ๐’‚๐Ÿ = 1, b2 = 2, c2 = 3 So, ๐’‚๐Ÿ ๐’‚๐Ÿ + ๐’ƒ๐Ÿ ๐’ƒ๐Ÿ + ๐’„๐Ÿ ๐’„๐Ÿ = (7 ร— 1) + (โˆ’5 ร— 2) + (1 ร— 3) = 7 + (โˆ’10) + 3 = 0 Therefore, the two given lines are perpendicular to each other.

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo